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ABSTRACT We present a simulation method for the auralization of the ancient Greek double-reed wind
instrument Aulos. The implementation is based on Digital Signal Processing and physical modeling tech-
niques for the instrument’s two parts: the excitation mechanism and the acoustic resonator with toneholes.
Single-reeded instruments are in-depth studied firstly because their excitation mechanism is the one used in a
great amount of modern wind-reed instruments and secondly because the physics governing the phenomena
is less complicated than the double-reeded instruments. We here provide a detailed model of a system
comprised of a double-reed linked to an acoustic resonator with toneholes to sonify Aulos. We validate our
results by comparing our method’s synthesized signal with recordings from a replica of Aulos of Poseidonia
built in our lab. The comparison showed that the fundamental frequencies and the first three odd harmonics of
the signals differ 6, 5, 3, and 2 cents on average, respectively, which is below the Just Noticeable Difference
threshold.

INDEX TERMS Aulos, digital signal processing, digital waveguides, double-reed, musical acoustics.

I. INTRODUCTION
The realistic sonification of physical musical instruments by
digital means constitutes a pole of attraction in several mul-
tidisciplinary scientific fields, such as physics, informatics,
musicology [1]–[7]. Theoretical acoustics has significantly
contributed to a better understanding of the physical phenom-
ena governing the generated sound. On the other hand, com-
puter scientists have developed new cost-effective algorithms
running undermodern and user-friendly interfaces, which can
simulate the phenomena and achieve real-time sonification.
These applications are not only valuable for musicians but to
the instrument industry as well. Influential pieces of software
that, via digital simulation, sonify a virtually customized
musical instrument are now commercially available, allowing
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accurate pre-production testing without physically building
the instrument.

State-of-the-art physical modeling (PM) techniques
[8]–[10] have been put into practice by commercial com-
panies (Native Instruments,1 Modartt,2 Applied Acoustic
Systems,3 etc.) to realistically sonify various popular instru-
ments. Distinct simulation techniques of single-reed wind
instruments have been proposed [11]–[15], leading to the
development of commercial pieces of software (e.g., Swam
Clarinets4). The nonlinear phenomena introduced by the
oscillating reed [11], [14], [16], [17] and the linear effect of
the oscillating air volume inside the resonator [12], [14], [15],

1https://www.native-instruments.com/
2https://www.modartt.com/
3https://www.applied-acoustics.com/
4https://audiomodeling.com/swam-engine/solo-woodwinds/swam-

clarinets/
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which defines the resonance and therefore the pitch and
timbre of the produced sound, are the fundamental elements
governing the physical phenomena of the reed wind instru-
ment. We assumed that these elements are the fundamental
aspects of significance in our model and validated the claim
with the results.

The resonator (a cavity where air particles that transmit the
sound waves are enclosed) of the majority of wind instru-
ments is either a cylindrical pipe or a conical horn. We note
here that Aulos (cylindrical resonator) and oboe (conical
resonator) have rather different harmonics even if both instru-
ments had the same resonator’s length. The air column oscil-
lates with respect to the tube’s resonant frequency, which is
determined by the instrument’s geometry. The pressure wave
propagates along the horizontal axis of the acoustic resonator
(i.e., direction along x axis in Fig.3) and it is transmitted
to the acoustical space (outside the resonator) through the
openings (bell and toneholes). The resonator results either in
an un-flared or in a flared end (bell). The acoustic attributes of
the produced sound depend on the aforementioned air column
oscillations. That is the reason why it is the instrument’s
geometry, rather than the material that most significantly
affects the produced sound [18]–[20].

Wind instruments allow the alteration of the generated
pitch through various techniques and mechanisms (e.g., tone-
holes, slide mechanisms, by means of embouchure). In this
work we consider only the use of toneholes. Open toneholes
significantly affect the pressure wave propagation by shorten-
ing the effective length of the air column as the pressure wave
exits the resonator at first open hole closest to themouthpiece.
Closed toneholes do not affect the resonant frequency as
much, but their effect cannot be neglected [12], [21]. Finger-
ing pattern, which is a pattern of open and/or closed tone-
holes, allows variations of the air column’s length, leading
to the production of a desired pitch. The potential register
holes, which are usually located on the bottom side of the
resonator opposite the toneholes, extend the frequency range
modifying the air column so as higher resonance frequencies
will be produced.

The reed, either single or double, which is located at the
tip of the mouthpiece, is the excitation mechanism of the reed
wind instruments. The player’s lips abut the reed’s blade(s),
and the air coming from the mouth flows inside the instru-
ment’s internal cavity. The pressure difference between the
player’s oral cavity and the reed’s channel helps to define
the reed movement during excitation. The reed closes as the
aforementioned pressure difference increases and opens as it
decreases. When the movement mentioned above becomes
periodic between two extreme positions (i.e., the reed oscil-
lates), the volume flow entering the resonator stimulates an
oscillation to the air particles inside the acoustic resonator.
This oscillating flow is obtained by a feedback loop con-
sisting of the nonlinear exciter coupled to the resonator.
Researchers, throughout the last decades, have extensively
studied the behavior of the nonlinear phenomena governing
the operation of single-reed wind instruments [12], [15], [22].

However, double-reed wind instruments are not thoroughly
studied, firstly because of the complexity of the airflow
that such an excitation mechanism introduces, and secondly
because there is a limited number of modern instruments
of this kind. The most popular double-reed instruments in
our times are the oboe, the bassoon, and the bagpipe, whose
reed consists of two symmetrical [17] oscillating blades fol-
lowed by a conical part that works as a conical diffuser.
Some alternative approaches for the physical modeling of the
double-reed musical instrument of Zournas have also been
presented in the literature [23]–[26].

Although not much research on the double-reed instru-
ments has been done, there are some studies [16], [17]
[27]–[31] which focus on the double-reed and the compli-
cated, nonlinear phenomena that govern its mechanism. Most
of these works study the oboe’s double-reed, but not in com-
bination with the rest of the instrument (i.e., the resonator).

According to archeomusicology, a significant number of
ancient instruments were played with a double-reed, e.g.,
the Greek Aulos [32]–[34] and the renaissance Rausch-
pfeife [35]. The Aulos of Poseidonia, dated in 5ct BCE, con-
stitutes a typical representative of the classical Greek Aulos
in terms of dating, geometry, and function [36]. Therefore, its
acoustic study enables us to suggest generalized indications
on the sound of Aulos of the classical era. In the current
work, we study the double-reed of Aulos, which geomet-
rically differs from the modern ones purely because after
the blades, instead of the conical part, there is a cylindrical
backbore. Andreopoulou’s work onAulos [37] focused on the
capabilities of scale reproduction but not on the instrument’s
simulation techniques. The current work aims to provide a
more robust and detailed modeling approach than previous
works. Our goal is to develop a complete digital analog of
this ancient wind instrument by using physical modeling
techniques. In order to do so, we modified the proposed
method by Almeida et al. [29], who studied the oboe’s reed,
to fit the Aulos reed case and, later, we combined the the-
ory for the nonlinear excitation mechanism with the digital
waveguidemethod [9], [12], [15], [38] to simulate the physics
of the resonator with its toneholes. As a result, we created
a digital double-reed wind instrument model that allows the
customization of the instruments’ geometry, i.e., the mouth-
piece’s length and the resonator, the positions, the size,
and the number of the toneholes and the fingering pattern.
In order to demonstrate a scenario of a simple, user-friendly
interface, we also created a Graphical User Interface (GUI)
which accepts values for the geometrical variables, virtually
demonstrates a simplified geometry of the instrument, and
displays the produced signal both in time and frequency
domain. This model can export the fundamental frequency
and its first harmonics and therefore, we expect it to be
a useful tool for archeologists and archaeomusicologists to
predict the musical scale or a missing part of an instrument.
It should be noted here that in this work, the effect of the
instrument’s material was not taken into account as, in the
family of instruments simulated (i.e., wind instruments with
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a cylindrical resonator), it does not significantly affect the
produced sound [18]–[20]. Lastly, we compared the audio
generated by our model with the recorded samples taken from
the replica of Aulos of Poseidonia, physically reconstructed,
by following the principles of archeomusicology [39].

The structure of the current work is as follows: first,
we describe in detail the modeling for the double-read and
the resonator along with the toneholes. Then, we present the
implementation of the read-resonator system and the open
and closed toneholes. Finally, we show the validation results
based on comparing the replica’s signal vs. the signal gener-
ated by the digital modeling.

II. MODEL’S DESCRIPTION
A. THE DOUBLE-REED
As mentioned in the introduction, the sound generated by
a wind musical instrument is due to the oscillating air par-
ticles that cause the pressure wave propagation along the
acoustic tube. In order to study this phenomenon, we first
need to simulate the excitation mechanism which triggers
these oscillations. In double-reed instruments, the movement
of the reed’s two blades which is caused by the alterations
of pressure (i.e., the pressure inside the player’s mouth and
the pressure inside the reed), is the excitation mechanism.
Because of the nonlinear movement of the double-reed (as the
reed rapidly closes), the airflow through it is affected by phe-
nomena such as vortices and/or turbulent flow [17], [27], [29]
which cannot easily be described by analytical expressions.
In this section, we present the calculation of the difference
between the mouth pressure and the pressure inside the reed
according to the mouth pressure and the pressure exiting the
reed (i.e., the pressure right after the reed’s conical part or
backbore). This is an essential step towards the simulation of
the generated sound of the wind instrument as the pressure at
the end of the reed equals the one entering the instrument’s
resonator, where the resonance (responsible for the sound
production) is taking place.

FIGURE 1. The double-reed excitation mechanism of the oboe.

Our approach of the double-reed is based on the work of
Almeida et al. [16], [29], who studied the oboe’s double-reed
excitation mechanism. In order to describe the nonlinear
behavior of the double-reed in a simple model, the quasistatic
regime is used to define the relationship between two vari-
ables of acoustic relevance; the pressure drop (1p) across
the reed and the volume flow (q) at its output. According
to quasistatic conditions, since the quantities p and q (Fig.1)

vary sufficiently slowly in time, all time derivatives in the
nonlinear characteristic relation can be neglected.

The pressure difference (1p)c between the mouth pressure
(pm) and the pressure inside the reed (pc) affects the reed’s
opening area (S). Both double-reed’s, the one that Almeida
described [29] and the one used in this study, are inward-
striking, i.e., when the mouth pressure is increased, the blades
of the reed tend to close. The relation of the pressure differ-
ence and the reed’s cross-section area is given by (1)

(1p)c = pm − pc = kS (S0 − S) (1)

where, S0 is the reed’s opening at rest, and kS is the reed’s
stiffness coefficient.

Almeida et al. studied the double-reed’s movement by
performing experimental measurements in the case of the
oboe [28]. For their experiment, they use an artificial mouth
which allows them to control and alternate the pressure pm.
Initially, the reed is at rest, where the pressure difference
(1p)c equals to zero, and the reed’s opening area is at its max-
imum level (S0). As the pressure pm increases the blades are
progressively closing. When the pressure difference exceeds
a specific value, the reed is forced to shut (S = 0) rapidly.
Consequently, the airflow through the reed stops, the pres-
sure pm suddenly increases, and the pressure pc drops to 0.
Then the mouth pressure pm is gradually decreased. The reed
remains closed until the value of pm – and consequently the
value of (1p)c – becomes small enough to allow for the reed
to open again. Then when the reed is open, the air starts
flowing again through the reed and, as a result, the mouth
pressure quickly decreases and the reed pressure increases.
When the pressure difference (1p)c becomes equal to zero,
it obliges the reed to stabilize at its initial rest position. It is
important to note here, that, in our simulation for simplicity
reasons we assume that the mouth pressure pm is not altered
(i.e., its value is constant). This simulated constant mouth
pressure (input signal) takes the value of 1 (normalized max-
imum) which is reached by an initial slope (corresponding
to the time needed to reach the constant value). Although
this simplification cannot simulate some aspects related to the
player’s subtle control of the sound quality (e.g., vibrato and
rapid transients), it enables the adequate approximation of the
normal playing condition (i.e., production of a self-sustained
steady oscillation) [40].

The volume flow (q) that enters the instrument is defined
by the pressure difference (1p)c and the reed’s opening area,
as described by Bernoulli (2).

q = S

√
2(pm − pc)

ρ
= S

√
2(1p)c
ρ

(2)

where, ρ is the density of the air medium.
In the case of the oboe’s excitation mechanism, the part

after the blades is conical. This geometrical feature is
described by the cross-sections Sc and Sr (Fig.1) and it is
considered to be a conical diffuser with a pressure recovery
coefficient cp (0 ≤ cp ≤ 1) [29], [30]. Therefore, the total
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pressure difference between mouth pressure and pressure at
the exit of the reed (pr ) is:

pm − pr = (1p)c − cp
1
2
ρ

(
q
Sc

)2

(3)

where, Sc is the cross-section at the beginning of the conical
diffuser and, assuming an ideal pressure recovery coefficient,
cp = 1− S2c

S2r
.

Combining (1) and (3), the pressure inside the reed is

pc = pr − cp
1
2
ρ

(
q
Sc

)2

(4)

Therefore, the pressure difference (1p)c can be expressed
according to the mouth pressure and the pressure at the exit
of the reed, as it occurs from (1) and (4)

(1p)c = pm − pr + cp
1
2
ρ

(
q
Sc

)2

(5)

Ancient double-reeds (Fig.2), on the other hand, geomet-
rically differ from modern ones. The main difference is that
after the blades, instead of a conical diffuser, there is a cylin-
drical part, called the reed’s backbore, with an inner diameter
equal to the inner diameter of the instrument’s resonator.

FIGURE 2. Ancient double-reed with cylindrical backbore.

In the case of the double-reed with a cylindrical backbore,
there is a neck located between the blades and the backbore.
As shown in Fig.2, Sc is the section area before the reed’s
neck, Sn is the section area of the neck and Sr is the section
area of the backbore.

Applying Bernoulli’s law between Sc and Sn and between
Sn and Sr respectively, we get:

pc +
1
2
ρ
q2

S2c
= pn +

1
2
ρ
q2

S2n
(6)

pn +
1
2
ρ
q2

S2n
= pr +

1
2
ρ
q2

S2r
(7)

The combination of the above relations gives:

pr = pc +
(
1−

S2c
S2r

)
1
2
ρ
q2

S2c
(8)

FIGURE 3. Harmonics of a closed-open pipe in three different
wavelengths: A. Four times the length of the pipe (4L) B. Four thirds the
length of the pipe (4L/3) and C. Four fifths the length of the pipe (4L/5).

As in oboe’s reed, we can set the constant cp = 1 − S2c
S2r

and, since in the ancient double-reed’s case Sn ≈ Sr , then
we conclude that cp = 0 and thus, according to (8), pr = pc
i.e. the pressure inside the reed’s blades equals the pressure
entering the instrument’s bore.

In our simulation, we consider a double-reed with such a
cylindrical backbore (Fig.2), so the pressure difference (1p)c
results from (5) as

(1p)c = pm − pr (9)

B. THE RESONATOR
The airflow coming from the reed enters the instrument’s
bore and forces the air particles inside the resonator to
vibrate. Assuming a simple closed-open tube without tone-
holes, the pressure waves travel along the tube and partially
come back every time they reflect at each end, forming a
standing wave inside the resonator. When the waves reach
the open end, they are reflected back with a phase change
of π , while, at the closed end, the waves are reflected back
without phase change [18]. In the physics theory govern-
ing reed instruments, the resonator’s end, where the reed
is attached, is considered to be closed because the reed’s
opening area is much smaller than the resonator’s diameter.
However, the other end is open to the outside air. Therefore,
Aulos’ resonator (a cylindrical wind reed instrument) behaves
as a closed-open pipe, which produces only the odd har-
monics with respect to the fundamental produced frequency.
At the closed end, there is a pressure antinode (i.e., the sound
pressure becomes maximum), and the displacement of the air
particles equals zero. At the open end, there is a pressure
node where the sound pressure equals zero (the pressure
is approximately atmospheric), and the displacement of the
oscillating air particles becomes maximum. Fig.3 A, B, and
C show few examples of pressure waves with wavelengths of
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FIGURE 4. The geometry of the tonehole.

4L, 4L/3, and 4L/5, respectively, which can be formed inside
a cylindrical closed-open pipe of length L.

C. THE TONEHOLES
The toneholes are located in the resonator part of the wind
instrument allowing variations of the air column’s effective
length corresponding to the fingering pattern [21]. The trans-
mission of the pressure waves happens at the closest to the
mouthpiece open hole, which acts as an unflared end. The
toneholes are cylindrical tubes of radius b, which are attached
to the resonator as shown in Fig.4, and they define the pitch-
ing of the wind instrument. Setting as a the cross-sectional
area of the resonator and tw the shortest height of the tone-
hole’s chimney, the tonehole height t is approximated [12] by

t = tw +
1
8
b
b
a

[
1+ 0.172

(
b
a

)2
]

(10)

III. IMPLEMENTATION
A. THE RESONATOR
The resonator is modeled as a one-dimensional digital waveg-
uide by using delay lines [12], [15], [38]. The delay line
is an elementary functional unit used to simulate traveling
wave propagation and constitutes the fundamental building
block of digital waveguide synthesis. The sum of the trav-
eling waves at a point gives the total power at that point
in the waveguide. The pressure pr exiting the reed equals
the pressure entering the instrument’s resonator because the
resonator’s cross-sectional area equals the one at the reed’s
exit (Fig.5). Considering p+ as the left-going and p− as the
right-going traveling wave (Fig.2), the total pressure inside
the resonator is:

pr = p+ + p− (11)

The relation between the right-going pressure p− and the
left-going pressure p+, can be expressed according to a
reflection coefficient (r , (12)), which concerns the reflection
at the closed end of the bore. For simplicity reasons and
because of the symmetrical displacement of the reed’s blades
in the X-axis [16], [17], we use the reflection coefficient
of a single reed as it is described in [15]. When the mouth
pressure exceeds the pressure inside the reed, the reed closes,

FIGURE 5. Block diagram of the Aulos’ digital waveguide model.

FIGURE 6. Reflection coefficient of the reed.

and the reflection coefficient equals 1. When the reed open-
ing reaches its maximum value, the reflection coefficient
equals 0.

p− = rp+ +
1− r
2

pm (12)

Smith [15] suggests the reflection coefficient function (13)
depicted in Fig.6, which introduces the nonlinearity, for h+1

1
=

pm
2 −p

+

b andm = 1
hc1+1

. The point hc1 is the smallest pressure
difference giving reed closure.

r =

{
1− m(hc1 − h

+

1), −1 ≤ h
+

1 ≤ h
c
1

1, hc1 ≤ h
+

1 ≤ 1
(13)

B. THE REED-RESONATOR SYSTEM
The combination of (5), (11), and (12) gives the relation
between the pressure difference (1p)c and the mouth pres-
sure, the reflection coefficient and the left-going resonator
pressure p+.

(1p)c =
(1+ r)

(
1
2pm − p

+

)
1− cp

(
S
Sc

)2
for Aulos(cp≈0)
−→ (1p)c = (1+ r)

(
1
2
pm − p+

)
(14)

Therefore, the total pressure pr inside the resonator now
occurs from (3).

pr = pm − (1p)c + cp
1
2
ρ

(
q
Sc

)2

for Aulos(cp≈0)
−→ pr = pm − (1p)c (15)
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C. TONEHOLES
The effect of the tonehole, either open or closed, can be
represented as a lumped circuit, symmetric T transmission
line model (Fig.7) with shunt impendence (Zs) and series
impendences (Za) [21]. The shunt impendence corresponds
to the standing wave inside the resonator, directly under the
tonehole. In contrast, the series impendence is related to the
pressure standingwave along the propagation axis at the place
of the tonehole.

FIGURE 7. T -transmission line model of the tonehole.

In the case of a pressure node at the tonehole junction,
the volume flow (U ) is symmetric across the junction. If there
is a pressure anti-node at the tonehole junction, the symmetry
across the junction is related to the pressure (P).

The characteristic impedance of the instrument’s res-
onator is

R0 =
ρc
πa2

(16)

where ρ is the air density, and c is the speed of sound in the
propagation medium (i.e., air).

According to Keefe [21], the lumped circuit, assuming that
|Za/Zs| � 1, is represented in (17), where the values of Zs
and Za depend on the status of the hole (open or closed)[

P1
U1

]
=

[
1 Za
Z−1s 1

] [
P2
U2

]
(17)

The reflectance and the transmittance [12] of the tonehole
are given by

r =
ZaZs − R20

ZaZs + 2R0Zs + R20
(18)

t =
2R0Zs

ZaZs + 2R0Zs + R20
(19)

1) OPEN TONEHOLES
The series impedance for an open-hole represents a negative
length correction to the resonator, and the predicted value
has a similar order of magnitude as the predicted closed-hole
series impedance. The shunt impedance of an open-hole in
the absence of dissipation and with negligible radiation is an
inertance that involves both inner and outer length corrections
as well as the tonehole’s chimney height.

An open tonehole’s specific resistance ξe accounts for
visco-thermal losses at the walls of the tonehole. Considering
rc as the radius of the resonator’s curvature, the specific
resistance is given by

ξe = 0.25(kb)2 + αt +
1
4
kdv ln

(
2b
rc

)
(20)

where k = ω/c is the wavenumber, α can be calculated
by (21), and it is described in the literature as either the
attenuation coefficient [41] or the real part of the propaga-
tion wavenumber [42], and dv =

√
2η/(ρω) is the viscous

boundary layer thickness in relation with the air’s shear
viscosity η.

α =
3 · 10−5

b

√
ω

2π
(21)

The effective length of an open tonehole is given by (22).

te =
k−1 tan(kt)+ b

[
1.4− 0.58

( b
a

)2]
1− 0.61kb tan(kt)

(22)

The open tonehole (o) series equivalent length [21] is

t (o)a =
0.47b

( b
a

)4
tanh

(
1.84 tb

)
+ 0.62

( b
a

)2
+ 0.64 ba

(23)

The series impendence Z (o)
a and the shunt impendence Z (o)

s
of the T -transmission line model for an open tonehole [21]
are given by

Z (o)
a = −jR0

(a
b

)2
kt (o)a (24)

Z (o)
s = R0

(a
b

)2
(jkte + ξe) (25)

2) CLOSED TONEHOLES
The shunt impedance for a closed tonehole in the
low-frequency limit is an acoustic compliance, whose volume
equals the closed-hole volume. The series impedance for a
closed tonehole may be written as a negative length correc-
tion; that is, the presence of a closed-tonehole at a pressure
node is equivalent to a reduction in the main resonator length
in the vicinity of the tonehole.

The closed tonehole (c) series equivalent length [21] is

t (c)a =
0.47b

( b
a

)4
coth

(
1.84 tb

)
+ 0.62

( b
a

)2
+ 0.64 ba

(26)

The series impendence Z (c)
a and the shunt impendence Z (c)

s
of the T -transmission line model for a closed tonehole [21]
are given by

Z (c)
a = −jR0

(a
b

)2
kt (c)a (27)

Z (c)
s = −jR0

(a
b

)2
cot(kt) (28)

D. IMPLEMENTATION OF THE PHYSICAL MODELING
Fig.8 presents the Graphical User Interface of the applica-
tion we have developed in MATLAB 2020b to implement
the physical modeling calculations described above. For the
example shown in Fig.8, the parameters are set according
to the ancient Greek Aulos of Poseidonia [36]. The user
sets Aulos main physical parameters, then the fingering
(open/closed toneholes) and the geometrical features of the
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FIGURE 8. Graphical user interface for implementing the physical modeling of Aulos showing the model’s input parameters and the results as
playable audio and its plots in the time and frequency domain. The parameters are set according to the geometrical features of the Aulos of
Poseidonia.

toneholes. An open hole is depicted as a white circle (in the
example shown in Fig.8 only the sixth tonehole is open). Then
the user hits the ‘‘RUN’’ button to start the calculations of the
physical modeling. As a result, an audio file is produced (the
user can listen to it by hitting the ‘‘Play’’ button), along with
the plots of its signal in time and frequency domain.

IV. VALIDATION
In order to evaluate our physical modeling approach
described above, we coded the model using MATLAB 2020b
and compared its audio output signals (Fig.9b) with the
recorded signals (Fig.9a) from the replica instrument of
Aulos of Poseidonia.5 Since the double reed instrument Aulos
can be described as a closed-open pipe and therefore it is

5This particular replica of the Poseidonia aulos was physically recon-
structed at the premises of the Speech and Accessibility Laboratory of the
National and Kapodistrian University of Athens, Department of Informat-
ics and Telecommunications, on the course of the HERMES: ‘‘Towards a
training music archaeology project on the reconstruction and use of ancient
Hellenic Musical Instruments’’ project implementation [4]. This specific
reconstruction is based on detailed images, measurements, and designs of
the original find provided by Reichlin-Moser, Paul J. & Barbara [2013] in
Der Paestum Aulós aus der Tomba del Prete. (Illustration by Verena Pavoni,
Visuelle Gestaltung: Ulrich Schuwey)

producing only the odd harmonics [18], our comparison
is focusing, in the frequency domain, on the fundamen-
tal frequencies and their odd harmonics. In some of the
recorded signals, even harmonics were present, as can be seen
in Fig.9a2. This could be due to the factors, for simplification
reasons, not considered in our model such as the reed’s saliva
and the shape of the main resonator not being perfectly cylin-
drical. Nevertheless, the study of this phenomenon is beyond
the scope of this work.

We recorded the low pipe replica of the Aulos of Posei-
donia with the musician (Georgios Barbarekos) performing
the seven fingerings to reproduce a scale. The microphones
were placed approximately 1m away from the instrument off
axis from the instrument’s bell and the musician played in
piano level every note once. Fig.9 shows the case of one
open tonehole for both the recording (Fig.9a) and the physical
model (Fig.9b). Their signals are shown in the time and
frequency (using Fourier transformation of 1 second recorded
signal) domain. The recordings took place at the studio of
the Laboratory of Music Acoustics and Technology, Depart-
ment of Music Studies, National and Kapodistrian Univer-
sity of Athens, on March 4th, 2021. The equipment used:
Microphone Preamplifier: Millennia HV-3D, A/D Converter:
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RME ADI A8 DS, Microphones: Neumann km184, and
stereo pair of Beyerdynamic M130 (Mid-Side technique).

We first compare the time domain characteristics of the
recorded (Fig.9a1) and the simulated (Fig.9b1) signal by
studying their dynamic temporal envelope. We observe that
our model simulates adequately the temporal characteristics
of the recording. The recorded and generated signals both
need the same amount of time to reach their steady-state
oscillation (i.e., attack of approx. 100msec followed by a pro-
longed sustain), marked with a yellow dashed line in Fig.9a1
and Fig.9b1. This is expected due to the inherent properties
of the digital waveguides which adequately transform the
signal propagation in the continuous space of the physical
instrument into the discrete space of the virtual instrument.
Considering the above, similar inputs (in our case a constant
mouth pressure) for both the physical and the virtual instru-
ment result to a correspondingly similar attack. Taking into
account that the time introduced into the model is related
to the adopted excitation method [12] is the first validation
of our double-reed implementation. The prolonged sustain is
due to the continuous existence of the excitation force (i.e.,
the constant air supply from the player).

FIGURE 9. Signal comparison of aulos: The recorded signal of the replica
(a) vs. the generated signal by the digitally implementation of the
physical modeling of Aulos using MATLAB 2020b (b), along with their
plots in the time (a1, b1) and frequency (a2, b2) domain.

Secondly, we compare the two signals in the frequency
domain. In order to study the timbre characteristics, we con-
sider the fundamental and the three first harmonics (Table 1).
The difference in cents was calculated using the formula
1200 log2

( a
b

)
where a and b are the frequencies (Hz) being

compared. The musician during the recordings reproduced
the scale that the instrument naturally generates according
to its geometry and to the available reeds. This resulted

TABLE 1. Comparison of the signals from our physical model (PM) vs. the
corresponding Aulos of Poseidonia’s low pipe replica recordings (Rec)
(C: Closed tonehole, O: Open tonehole, Dev: Deviation in cents, Fundam.:
Fundamental, OT: Overtone).

in a diatonic scale the tonic center of which is defined by
the third fingering pattern, forming with the 6th and 7th

fingering patterns the approximately pure intervals of the
fourth and fifth, respectively. In the case of four open tone-
holes, the fundamental frequency of the recorded signal is
320Hz, and the simulated one is 323Hz deviating by 3Hz,
which is translated to -16 cents. This mismatch is the most
remarkable frequency difference of all the fingerings we com-
pared, and it is still slightly above Just Noticeable Difference
(JND) [43], [44]. In more detail, the absolute deviation in
cents of the fundamental frequencies shows an average devi-
ation of 6 cents and a standard deviation of ±5 cents. The
first harmonics show an average deviation of 5 cents and a
standard deviation of ±3 cents; the second harmonics show
an average deviation of 8 cents and a standard deviation of±8
cents. The third harmonic shows an average deviation of 2
cents and a standard deviation of ±3 cents. All the above
results can be considered perceptually insignificant as they
are well below the JND. Inharmonicity (i.e., the deviation of
the overtone frequencies from the perfect integer multiples of
the fundamental frequency), which is a factor that defines the
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TABLE 2. Inharmonicity of the signals from our physical model (PM) vs.
the corresponding Aulos of Poseidonia’s low pipe replica recordings (Rec)
(C: Closed tonehole, O: Open tonehole, IH: Inharmonicity in cents, Diff.:
Difference between the inharmonicity of PM and the inharmonicity of Rec
in cents, OT: Overtone, abs: Absolute, Avg: Average).

timbre, is similar for both the recorded and the synthesized
signal (approx. 3 cents in average), see Table 2. Moreover,
the total inharmonicity (calculated as the average absolute
deviation for the first three overtones, demonstrated in the last
column of Table 2) differentiates less than 2 cents for both the
recorded and the synthesized signal in all fingerings, except
for the COOOOO which differs by 5 cents.

The microphones in the recordings where placed 1m away
from the instrument and the output signal from out model was
in the beginning of the mouthpiece (see Fig.8). The effect of
the bell is to radiate out of the instrument the high frequencies
and to reflect back the low frequencies. This reflectance can
be modeled as a low-pass filter [12]. Thus, the signal gener-
ated by our model (where the output is positioned inside the
resonator) compared with the relative recording (microphone
as well as a potential listener positioned outside the resonator)
is missing energy in the high frequencies.

V. CONCLUSION
In this investigation, we presented a digital model of Aulos,
a double-reed wind instrument, implemented with physical

modeling techniques. We considered two parts of the instru-
ment in order to describe and simulate the physical phe-
nomena (the excitation mechanism and the resonator with
toneholes). Aulos excitation mechanism is the double-reed,
consisting of two symmetrical blades followed by a cylin-
drical backbore in contrast with the conical backbore of
the recently used double-reeds such as the oboe’s one. The
nonlinear behavior of the double-reed is described by using
quasistatic regimes defining the relation between the pressure
difference and the volume flow across the reed. We used
a one-dimensional digital waveguide to simulate the instru-
ment’s resonator simulating the pressure traveling wave prop-
agation and the air particles’ oscillation inside the resonator.
The effect of the open and/or closed toneholes is modeled
with respect to their impedances as a lumped T-transmission
line circuit.

The comparison of the signal recorded by the replica of
Aulos of Poseidonia, built in our lab, with the signal generated
by the relevant physical modeling digital implementation of
the instrument showed good agreement, especially in the
frequency domain. In the time domain, our model simu-
lates temporal characteristics of the recording, but further
improvements could be made by applying an Attack, Decay,
Sustain, Release (ADSR) envelope. In the frequency domain
for a scale (seven notes), the fundamental frequencies and
the three first harmonics of the signals differ only 6, 5, 3,
and 2 cents on average, respectively, which is below the
Just Noticeable Difference threshold. Further, the resonant
frequencies in both signals only slightly differentiate from the
odd multiples of the corresponding fundamental, as expected
by the theory, and their total average absolute inharmonicity
is approximately 3 cents for both of them.

Moreover, by clearly describing the physical phenomena,
we expect to inspire researchers to: a) improve the current
model by resolving the constrain of the calculated pres-
sure point been inside the resonator and the absence of the
even harmonics (as per the theory of a closed-open pipe),
b) describe musical instruments as acoustic metamaterials
like various apparatus are used in other fields of acoustics
[45], [46] and, c) by knowing the acoustics of ancient the-
atres [47], [48], making them virtually sound again as they
use to in their natural auditory space.
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