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ABSTRACT 

In this work we study the vibrato rate, extent and 
intonation in Byzantine Music. Two methods of analysis 
have been applied: the first based on the analytical signal 
and the second on the crests and troughs of the waveform 
of the vibrato signal. Tones - samples were extracted from 
ascending and descending music scales, chanted by five 
famous singers for all the Greek vowels. The two analysis 
methods produced identical results in the level of 
significance, a=0.05, concerning the mean extent, the 
mean standard deviation of the rate and the mean 
intonation, while they differed in the rate (1.9-6.6%), the 
mean standard deviation of the extent (4-6 cents) and the 
standard deviation of intonation (0.46-1.20 Hz). Typical 
values of the average rate within a tone were found to be 
5.35 Hz (SD: 0.96 Hz) and 5.13 Hz (SD: 0.95 Hz), while 
the most frequent values were 4.8 Hz and 4.5 Hz, for the 
first and second method, respectively. The average extent 
within a tone was 50 cents (SD: 18 cents). Moreover, the 
dependence of the vibrato parameters on pitch and sound 
intensity has been studied; there was no systematic 
relationship between them. 

1. INTRODUCTION 

The term “Byzantine Music” (BM) describes the 
contemporary church music of the Greek Orthodox 
Church, primarily, but also it refers to both the medieval 
sacred chant of Christian Churches following the 
Constantinopolitan Rite and the secular music in the 
Byzantine and post-Byzantine era. The eight-mode system 
of BM has affected the modern Greek folk and popular 
songs. In an effort of a comprehensive study of Greek 
singing, the study of BM is necessary, fundamental and of 
primal importance. Although musicologically, BM has 
been systematically studied [1], its acoustical attributes 
have not been thoroughly examined [2, 3, 4, 5]. 

The BM is purely vocal music and is performed without 
the accompaniment of musical instruments. Therefore, 
only the voice must satisfy the requirements for artistic 

musical ornaments, which embellish the melody in the 
music performance. Vibrato constitutes a characteristic 
ornament of the melodic voice [6]. It has been extensively 
studied in the context of various kinds of vocal music 
world-wide [7, 8, 9, 10]. Many of these studies had to do 
with the lyrical songs of Western opera, addressing the 
basic vibrato parameters rate and extent [10, 11, 12]. 
Also, dependencies were found between the 
appropriateness or not of vibrato with its rate, extent, 
periodicity and onset. Moreover, the relationship of poor 
or good vibrato with respect to the variability of its rate 
and extent has been studied [13]. In BM, the vibrato 
seems [14] to be a rather rare phenomenon, with rate and 
extent values to be different from those in Western opera. 
In that preliminary study [14] only average values of the 
rate, extent and vibrato duration were measured, by 
analyzing a single BM hymn. 

In this work, the characteristics of BM vibrato rate and 
extent are studied in order: a) to assess their values in 
detail, and b) to search for any relationships with other 
voice features, such as fundamental frequency (f0) and 
sound intensity. 

2. METHOD OF THE ANALYSIS AND 
MATERIAL 

Vibrato analysis methods have been based on: a) studying 
the spectrogram under manually intervention of the user 
[11, 12], b) frequency analysis with a sliding window on 
the vibrato waveform [13], c) calculating the 
instantaneous frequency, resulting after the application of 
the Hilbert transform on the vibrato signal [15, 16]. 

2.1 The analytic signal 

According to the last mentioned method above, vibrato is 
considered to be a time dependent signal of the form: 

����� = ���� + 	
�����
�
���        (1) 

where: 

�
��� = 2� � �
������
��                (2) 

The signals αυ(t) and φυ(t) correspond to the time 
varying parameters of the extent and the rate of vibrato, 
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respectively. b(t) corresponds to the intonation of vibrato. 
It is known [15] that there is no single solution to the 
problem of determining these three signals, which 
constitute the time varying model in (1) and (2). The 
signal b(t), could be obtained by passing the signal f(t) 
through a low pass filter with a cutoff frequency less than 
3Hz, with the condition the vibrato rate to be equal or 
greater than 4Hz. 

By subtracting the signal b(t) from f(t), we get the 
pseudo-sinusoidal signal s(t): 


��� = ���� − ����                 (3) 

Further analysis of the s(t) estimates the signals αυ(t) and 
φυ(t) through the analytic signal, which is defined as:  

���� = 
��� + ��[
���]      (4) 

where Η[s(t)] is the Hilbert transform of s(t). 
The analytic signal z(t) can be expressed in polar 

coordinates as follows: 

���� = ������ ���           (5) 

In the case s(t) is a band-pass signal, then the amplitude 
and the phase derivative of the analytic signal define the 
amplitude and frequency modulation, respectively. The 
extent of the vibrato signal can be estimated from the 
amplitude A(t) divided by 2π. The rate of the vibrato 
signal can be estimated from the derivative of θ(t)  
divided by 2π. 

2.2 The algorithm of this analysis  

2.2.1 The first algorithm (analytic signal) 

For the estimation of b(t) we have followed a different 
analysis method from that in [15]. Specifically, i) instead 
of low pass filtering the vibrato signal, first, the crests and 
troughs are located at the waveform and then the center of 
the vertical distance between two successive extremes is 
located, for all the maximum–minimum pairs. ii) The 
number of these central points is augmented via a cubic 
piecewise interpolation process, which preserves the 
shape of the data and respects monotonicity [17]. The 
resulting b(t) is a smoothed line following the slow 
changes in the vibrato waveform. We have followed the 
above estimation approach for the intonation for two 
reasons: a) Due to the rather low values of the vibrato rate 
in BM [14], a low pass filtering is not possible to be 
applied without loss of information that the vibrato signal 
conveys, and b) because part of the low pass filtering 
resulted in an intonation, which was not passing through 
the central points of the vibrato waveform, but instead it 
received values beyond the extremes. This last 
observation did not agree with the pitch perception of the 
vibrato tone. 

 

Figure 1. Signals for the first two steps of the analysis: (a-
b) tone’s waveform and spectrum, (c) fourth partial’s 
selection and (d) vibrato waveform. 

The steps of the first algorithm of the analysis are: 
1) Compute the waveform of a partial of the voice 

signal, via band pass filtering. Select the partial, 
which shows the highest signal to noise ratio (Fig. 
1a-1c). 

2) Find the vibrato signal through the analytic signal 
based on the equations (4) and (5) (Fig. 1d). 

3) Remove the rapid changes of the vibrato waveform 
through low pass filtering with a 20 Hz cutoff. 
Estimate the time indexes of its crests and troughs 
(Fig. 2a). 

4) Compute the coordinates of the central points for 
each pair of successive extremes (asterisks in figure 
2). 

5) Estimate more points through cubic interpolation 
between the central points (Fig. 2a). (Compare the 
intonation time series with the low pass filtered with 
cutoff 2 Hz). 

6) Subtract the intonation signal from the vibrato 
signal. 

7) Compute the analytic signal with the equation (4). 
8) Obtain the rate (instantaneous frequency) and the 

extent of vibrato from the relation (5) (Fig. 2b-2d). 
In step (5), the intonation time series, although it is very 

close to the low filtered vibrato waveform at four points 
(Fig. 2a), it deviates at the other points, especially at the 
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edges. For this reason, the intonation waveform via cubic 
interpolation was preferred to the other. Specification of 
the time segment of the vibrato signal to be analyzed was 
implemented as follows: First, time borders were roughly 
defined, manually. Then, the time limits were marked 
precisely so that the left boundary is the midway of the 
distance between the two first successive extremes, in 
horizontal and vertical direction. The right border was 
found in the same manner for the last two successive 
extremes. 

2.2.2 The second algorithm  

To assess the accuracy of the above method, the vibrato 
characteristics rate, extent and intonation were also 
calculated by the following system of relations (6), (7) 
and (9). Henceforth we will refer to them as the second 
method of analysis. All the calculations in this method 
were based on the extremes in the waveform of vibrato. In 
Figure (2), the values obtained based on the extremes are 
represented together with the signals of the rate and extent 
as estimated by the first algorithm. The equations for 
estimation of the rate and extent through the second 
method are the following:   

!	���"� = 1 $2%��& + 1� − ��&�'()  (6) 

�*��+��"� = |	�& + 1� − 	�&�|/2 (7) 

where t(k) and a(k) are the instant and the value of the 
extreme k respectively. In this way, the rate and extent is 
computed for each semi-cycle of vibrato, by, roughly, 
doubling the number of the time instants.  

However, since the variation of the values of the 
extent also increases, the mean between the two values of 
successive semi-cycles was calculated. (Fig. 2c, cycles). 
In a previous study [12], the extent was calculated as the 
percentage of the mean intonation between two semi-
cycles, namely, based on the relation (8): 

�*��+��"� = ./�0�1��2/�0�3/�031�/�0�1�32/�0�3/�031�.             (8) 

which can be obtained from the equation (7), as the ratio 
between the semi-sum of pairs of successive extreme 
values (two semi-cycles) and the mean intonation for 
these two semi-cycles. This value of the mean intonation 
is defined as: 

4+��+	�4�+�"� = 	�&� + 	�& − 1� 2	⁄ +	
�	�& + 1� + 	�&�	� ⁄ 2   (9) 

where m takes values from 1 up to k-1. 
The final values of the extent are converted in the music 

scale of semitones with frequency of reference the note of 
A3 (220 Hz), for any comparison in the psychoacoustic 
scale with previous studies, as well as because the order 

of the partial selected for the analysis varies among the 
tones. 

 

Figure 2. Signals and results of the algorithm of the 
analysis: (a) Intonation after low pass filtering (black 
line) and cubic interpolation (red line). Extremes at the 
smoothed waveform (red and blue cycles) along with the 
half-way distance points between them. (b) The values of 
the rate being estimated for each semi cycle of vibrato 
(asterisks) and the rate’s waveform through the analytic 
signal. (c) Estimated values of the extent through the 
analytic signal (line), the equation (7) – asterisks and the 
equation (9) cycles.   

The values of the relative intensity level of the sound 
of the DAMASKINOS corpus [18] refer to the same 
distance from the microphone (30cm), for all recordings 
by using the same apparatus and settings. Intensity levels 
were calculated in relation to the loudness threshold. All 
the software developed for analysis was implemented in 
the MATLAB programming environment. 

2.3 Material 

Choosing the audio sample-tones for the analysis it was a 
difficult task, because of the rareness of the phenomenon 
of vibrato in BM. This is probably mainly due to stylistic 
reasons, an explanation that is supported by the short 
duration of vibrato [14] (less than 1.5sec, with an average 
0.7sec). Assuming an average rate equal to 4.2 Hz (in BM 
hymns of medium rhythm) then the number of vibrato 
periods for analysis is approximately three, on average. 
For the purpose of finding possible longer tones for more 
accurate analysis, we selected those parts of the 
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DAMASKINOS corpus [18], which include chanted 
scales, both ascending and descending ones. The implicit 
assumption here is that the parameter values of vibrato 
will be approximately similar to those found in the 
musical performance of Byzantine Music [14]. Chanters 
were asked to chant each tone of the scale slowly and 
trying to keep its F0 invariable. In order to have a small 
representative set of subjects [19], five chanters were 
selected so as to be one chanter from each chanting 
category according to some classification, based on their 
spectra in a previous study [14]. The ages of these 
chanters ranged between 40 and 60 years, which were 
suitable to combine art experience with a cultured voice. 
The tones for each chanter were selected to belong to six 
frequency bands of 1 semitone width each and centers 
being defined by the notes C3, D3 #, F3 #, A3, C4 and D4 
# (± 0.5semitones). Any tone contains only one vowel out 
of /a/, /o/, /i/, /e/ and /u/. Two tones were selected for each 
vowel and chanter, one from ascending and one from 
descending scale. The constant difference in frequency 
between the notes by three semitones was chosen in order 
to examine whether there are dependencies on the other 

logarithmically varying sizes (intensity level, extent and 
intonation).   

3. RESULTS 

Table (1) compares the two methods of vibrato analysis 
through a paired t-test between the mean values of the 
vibrato parameters, the rate, extent, intonation and their 
average standard deviations within each tone. The t-test 
reveals that the results of the two methods do not differ in 
the mean standard deviation of the rate, the mean extent 
and the mean intonation at the level of significance a = 
0.05; however, they do differ in the mean rate and the 
mean standard deviations of the extent and intonation. 
Table (1) also shows the confidence intervals of the 
average difference between the values of the second and 
the first method, from which it follows that the maximum 
and minimum average difference in rate is 0.34 Hz and 
0.1 Hz greater in the first method, respectively. In 
percentage terms, and taking into account the Table (2), 
these values correspond to 6.6% and 1.9% of the average 
of the second method, for all the tones. 
 

 
 
 
  

Mean of the 
rate  
(Hz) 

SD of the 
rate 
(Hz) 

Mean of the 
extent  
(sem) 

SD of the 
extent  
(sem) 

Mean of the 
intonation  

(Hz) 

SD of the 
intonation 

(Hz) 

h value 1,00 0,00 0,00 1,00 0,00 1,00 

p value 0,00 0,78 0,34 0,00 0,99 0,00 

CI lower -0,34 -0,11 -0,04 0,04 -17,30 0,46 

CI upper -0,10 0,08 0,02 0,06 17,47 1,20 

SD 0,74 0,57 0,19 0,07 108,41 2,30 

t stat -3,56 -0,28 -0,96 8,72 0,01 4,43 

df 598,00 598,00 598,00 598,00 598,00 598,00 

Table 1. Paired t-test between the two methods of vibrato analysis.  

 
 

Mean of the 
rate  
(Hz) 

SD of the 
rate  
(Hz) 

Mean of the 
extent 
 (sem) 

SD of the  
extent  
(sem) 

Mean of the 
intonation  

(Hz) 

SD of the 
intonation 

(Hz) 

Mean (1st) 5,35 0,96 0,51 0,10 486,9 3,24 
SD (1st) 0,69 0,46 0,18 0,06 114,3 1,99 

 
Mean (2nd) 5,13 0,95 0,49 0,14 487,1 4,06 
SD (2nd) 0,75 0,75 0,18 0,07 114,4 2,41 

Table 2. Average values and their standard deviations of vibrato parameters over all subjects and pitches. 
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The average difference of the standard deviation of the 
extent is between 0.04 and 0.06 semitones, i.e.  4 and 6 
cents, and in percentage values are 40% and 60% greater 
than the respective values of the first method, for all the 
tones. The confidence interval of the average difference 
of the standard deviation of intonation is (0.46 Hz, 1.20 
Hz), i.e. (23.1%, 60.3%) greater than the values of the 
first method, for all the tones. 

The average values for the entire set of tones, of the 
mean rate, mean extent and within the tone their standard 
deviations, for both methods are presented in Table (2). 
Moreover, the standard deviations of the within tone 
means for all tones are provided. The distributions of 
these values are presented in Figure (3). Although the 
within tone mean of the rate ± 1SD is 5.13 ± 0.95 Hz, for 
the second method, (5.35 ± 0.96 Hz for the first method) 
the value 4.5 Hz seems to have higher occurrence for the 
second method (4.8 Hz for the first method - Figure 3a) 
as the histogram is not symmetric in its maximum. The 
second method shows a tendency for slightly lower rate 
values compared to the first and this is not the case in the 
standard deviations (Fig. 3a, c). The intra-tone variation 
in the rate is greater than that for all tones and chanters 
(0.95 Hz versus 0.75 Hz - Table 2). For the rate, the 
largest percentage of values (mean ± 2SD) of the within 
tone standard deviation has a value less than 2 Hz (Figure 
3c). The corresponding percentage for the rate has a 
value less than 7 Hz.  

The extent shows approximately the same 
distribution of mean values within the tone (Figure 3b) 
and its standard deviations tend to be smaller in the first 
method than the second (Fig. 3d). The majority of values 
(mean± 2SD) of the mean vibrato extent over all tones 
vary within the range of 0.50 ± 0.36 semitones (Table 2). 
This finding is quite different from the values at the 
opera, where the extent reaches the maximum value of 
123 cents [12]. 

Examining the dependency of the rate, the extent and 
their standard deviations on the f0, we observe that there 
is a negligible tendency for the within the tone mean rate 
to increase by 0.13 Hz per 100 Hz raise of the f0 (Fig. 
4a). The regression analysis was based on the least 
squares and the assumption that there is a linear 
relationship between the dependent and independent 
parameter. In a total change by 300 Hz, the rate can be 
increased by 0.39 Hz, which corresponds to a change of 
less than the standard deviation (0.75 Hz -Table 2). For 
the same reason, the standard deviation of the rate is not 
affected by the change of the pitch (Figure 4b). Similarly, 
both the intra-tone mean extent and its mean standard 
deviation decrease by increasing the pitch by 0.7 cents/ 
semitone and 0.2 cents/semitone, for the mean and 
standard deviation of the extent, respectively. In a total 
change of f0 by 16 semitones, the reduction is 11.2 cents 

and 3.2 cents, for the mean and standard deviation of the 
extent, respectively.  

The corresponding standard deviations across the tones 
are 18 and 7 cents, respectively, which are values greater 
than of the overall pitch change. The relationship 
between the intensity of the tone and f0 in semitones, as 
expected, is linear, with a slope of about 0.55 dB / 
semitone (Figure 5a). Also, the within the tone extent of 
vibrato and its within tone mean standard deviation show 
a linear relationship with a slope 1.2 semitones of extent / 
semitone of SD (Figure 5b). In other words, for an 
increase of 1 semitone in extent, its standard deviation 
increases by 0.83 semitones. Finally, the extent of the 
vibrato is not affected by the changes in intensity for all 
the tones as shown by the regressive analysis in Figure 
(5c). 

 

Figure 3. Histograms of the estimated values for the 
rate (a), the extent (b), the SD of the rate (c), and the SD 
of the extent (d), by the two methods of  analysis. 

4. DISCUSSION 

The two methods of vibrato analysis give identical 
results concerning the within tone mean standard 
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deviation of the vibrato rate, the mean intra-tone vibrato 
extent and the mean intra-tone intonation. Although it 
seems that do not agree to each other in the intra-tone 
mean rate, the maximum difference of 0.34 Hz is rather 

 

Figure 4. Values of vibrato characteristics in BCM for 
the (a) rate, (b) SD of the rate, (c) extent, and (d) SD of 
the extent, in relation to f0 for all the tones analyzed. 
Straight lines of Least Squares fitting are shown along 
with their parameters.    

small, provided that the intra-tone standard deviation is 
2.5 times greater. The major cause of this difference is 
due to improper placement of the extremes of vibrato 
waveform, despite the smoothing of the analysis 
algorithm. This measurement error of the rate mainly 
affects the second method. Also, there may be changes in 
the rate values due to the pseudo-sinusoidal waveform of 
vibrato, which, although they are taken into account in 
the first method, do not affect the values estimated by the 
second one (see Figure 2b, time 0.2-0.4sec). The 
difference between the two methods in the intra-tone 
mean standard deviation of the extent by 6 cents (at 
most), is obviously due to the estimation of the intonation 
time series. Since the within the tone mean standard 

deviation of intonation is a bit bigger in the second 
method by 1.2 Hz (at most) and the mean difference 
between the two methods is also about 1.2 Hz, this 
difference could be ascribed mainly to the intonation time 
series. Improvements in the analysis algorithm could be 
made by applying a better smoothing of the vibrato 
waveform, for the second method and another way of 
estimation of the intonation time series for the first 
method. 

 

Figure 5. Correlograms for all analyzed tones between: 
(a) relative intensity and f0, (b) extent of vibrato and SD 
of extent and, (c) extent of vibrato and relative intensity. 
Straight lines of Least Squares fitting are shown along 
with their parameters. 

It is obvious that the standard deviation across the 
chanters and vowels is smaller than that within the tone. 
This may suggest that the vibrato rate depends mainly on 
the stylistic characteristics of BM rather than the 
individual characteristics of the chanters. Yet, the fact 
that this is not affected by the pitch change inside the 
pitch range of the “average” chanter is in line with the 
literature, where no systematic differences have been 
observed [10]. The maximum value of vibrato extent in 
BM of 86 cents, has been also found in a previous study 
[14], which was implemented with a different sample of 
chanters and is likely due to low pitches in BM. This 
follows from the fact that the intensity varies depending 
on the pitch (Figure 5a); also it was observed that 
whenever it increases, the extent of vibrato increases too. 
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However, when the intensity decreases, the extent tends 
to remain stable, while exhibiting a maximum in the 
middle pitches [20]. In this study, the extent does not 
change with the increase of intensity within the pitch 
range of the “average” chanter. This may be explained by 
the fact that in the entire set of tones, half came from 
descending scales and furthermore these changes are 
different for each chanter. The marked decrease in the 
average value over the frequency range (302.3Hz -320.2 
Hz: D4 # ± 0.5 semitones) reveals that a maximum exists 
in the extent values somewhere in the previous middle 
pitches. Both the rate and extent of vibrato differ slightly 
between the tones of musical scales and those of musical 
performance [14] by 4.5 or 4.8 Hz versus 4.1 Hz and 0.5 
semitones versus 0.6 semitones, respectively. In [14], 
tones extracted from a single Byzantine hymn (of 
melodic sticheraric type [1]) were analyzed questioning 
these differences between musical scales and 
performance. Further investigation is needed for these in 
order to be considered systematic. Besides this, reverse 
differences have been reported between sustained tones 
and real performance of a song. More specifically, lower 
rate values have been found in sustained notes than inside 
a song [21]. In addition, these differences in vibrato rate 
and extent in BM could also be due to the method of the 
analysis. In the current work other than the 
autocorrelation method was used  and issues such as rate 
and extent time series, vibrato intonation and various 
dependencies on f0 and intensity were considered here. 

5. CONCLUSIONS 

Two methods of vibrato analysis applied in BM showed 
identical results although with slight differences in the 
mean intra-tone rate and variability of the standard 
deviations of the intensity. There was no systematic 
dependence of the vibrato parameters on the f0 and BM 
intensity. There is a need to investigate further the 
variation of the characteristics of BM vibrato in every 
tone per chanter and by increasing the sample for 
analysis, by including more singers and tones. 
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