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Abstract: A simulation of a musical instrument is considered to be a successful one when there is a
good resemblance between the model’s synthesized sound and the real instrument’s sound. In this
work, we propose the integration of physical modeling (PM) methods with an optimization process to
regulate a generated digital signal. Its goal is to find a new set of values of the PM’s parameters’ that
would lead to a synthesized signal matching as much as possible to reference signals corresponding
to the physical musical instrument. The reference signals can be: (a) described by their acoustic
characteristics (e.g., fundamental frequencies, inharmonicity, etc.) and/or (b) the signals themselves
(e.g., impedances, recordings, etc.). We put this method into practice for a commercial recorder,
simulated using the digital waveguides’ PM technique. The reference signals, in our case, are the
recorded signals of the physical instrument. The degree of similarity between the synthesized (PM)
and the recorded signal (musical instrument) is calculated by the signals’ linear cross-correlation.
Our results show that the adoption of the optimization process resulted in more realistic synthesized
signals by (a) enhancing the degree of similarity between the synthesized and the recorded signal (the
average absolute Pearson Correlation Coefficient increased from 0.13 to 0.67), (b) resolving mistuning
issues (the average absolute deviation of the synthesized from the recorded signals’ pitches reduced
from 40 cents to the non-noticeable level of 2 cents) and (c) similar sound color characteristics and
matched overtones (the average absolute deviation of the synthesized from the recorded signals’ first
five partials reduced from 41 cents to 2 cents).

Keywords: correlation; musical instruments; optimization; physical modeling; recorder; tuning

1. Introduction

The acoustic simulation of musical instruments using computer models is a pole
of attraction for scientists of multidisciplinary fields (i.e., physics, informatics, musicol-
ogy, etc.) [1–8]. In the last decades, several digital sound synthesis techniques have been
developed (e.g., sampling, spectral modeling, and physical modeling) [9]. Physical Model-
ing (PM) is the technique that, by simulating the instrument’s physical phenomena, can
generate its sound. The audible result of this technique depends purely on the level of detail
of the model. Describing all the phenomena in detail is not trivial (i.e., non-linearity of the
vibrating reed, complex geometries, etc.). Thus, in the process of simulation, assumptions
are made in order to simplify the model, which inevitably affects the final result.

Applying correction factors is a technique that can enhance the accuracy of a signal that
is produced by a digital generator. Its goal is to find the values of the model’s parameters
that lead to a generated signal matching as much as possible to a reference one. In this
work, we propose a minimum error method to choose the optimal parameters given the
predetermined criteria. The integration of musical instruments’ PM methods with our
framework can tune the model, given the inherent PM limitations.

In the next section, we present the integration of PM of musical instruments with the
optimization framework (Section 2). Next, we put the proposed method in practice for
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the case of a commercial Hohner recorder (Section 3). The physical model of the recorder,
based on the Digital Waveguides technique, is presented in Section 3.1, followed by a
detailed description of the optimization technique adopting the optimization framework
to enhance the model’s audio (Section 3.2). Finally, we compare the synthesized signals
generated by the PM (without adopting the optimization framework) and by the PM-OPT
(adopting the optimization framework) with the relative recorded from the real musical
instrument and present our results in terms of the degree of similarity, the tuning accuracy,
and the sound color characteristics (Section 3.3) ending up with a discussion about the
current work (Section 4).

2. Method

In this work, we present the integration of the optimization framework with the
PM of musical instruments (Figure 1). In brief, this method enables the modification
of the PM parameters through correction factors. It is an iterative process to solve an
optimization problem. In every iteration, the optimizer tries a new set of values for the
correction factors (CFnew, Figure 1), resulting in new synthesized signals. Next, the signals
are evaluated according to the predetermined criteria. The goal is to determine the optimal
set of correction factors derived by the solution of an optimization problem. An optimal
set of correction factors is the one that when applied on the relative parameters of the PM,
will result in the synthesized signal with the highest evaluation score (Output, Figure 1).
We would like to note here that in this work we used the known PM techniques, for the
simulation of the musical instrument, thus, any modeling challenges (e.g., nonlinearities)
concerning the PM were taken from the relevant literature (see Section 3.1). Although
nonlinearities concern the PM and not the adopted optimization framework, it is a fact that
they affected our approach by imposing the need to use a different set of correction factors
for every note produced rather than for a single set.

The first step is to define the details of the synthesis part (Input 1, Figure 1). It
includes the determination of (a) the modifiable parameters, (b) the parameters’ lim-
its, and (c) the specific modification type of every parameter. In this step, the designer
should ensure that unwanted alterations of the core elements in the PM algorithm are
avoided. Thus, setting the modifiable parameters (determination point a) and their lim-
its (determination point b) is essential to avoid results with no physical meaning, such
as placing the position of a tonehole outside the body of a wind instrument. In prin-
ciple, all the parameters of the algorithm can be potentially considered tunable param-
eters. However, if parameter A depends on parameter B (i.e., A = f(B)), and B only
affects A (i.e., there is not a parameter C for which C = g(B)), then modifying both A
and B is unnecessary. Based on the above, we chose the tunable and locked parameters.
Type of modification (determination point c) in the proposed method is the mathemat-
ical expression which, with the use of a correction factor (CF), tweaks a parameter P:
(e.g., Pmodi f ied = Pinitial + CF, Pmodi f ied = Pinitial · CF, Pmodi f ied = Pinitial

CF, etc.).
The second step includes the evaluation of the generated signal. The goal in our

approach essentially is the following: the synthesized signal, generated by a PM according
to building details (Input 2, Figure 1), to be as similar as possible to a reference. In our case,
the reference is derived from a recorded signal generated by a musical instrument (Input 3,
Figure 1). The proposed model, apart from recordings, works with other reference signals
as well. For example, the goal signals could be generated by digital synthesis techniques
(e.g., additive) and even signals consisting of raw numbers describing sound parameters
(e.g., inharmonicity, deviation, durations, and other acoustic features found, for example,
in [10]). In every iteration, the optimizer assigns new values to the correction factors’
set (CFnew, Figure 1), which modifies correspondingly the Physical Modeling resulting in
a new synthesized signal (Figure 1). The synthesized signal is then compared with the
recording. An objective function calculates the resemblance of these two signals (in our
case, the function is cross-correlation, see Section 3.2). It enables the quantification of the
degree of their similarity (DS, Figure 1). The optimizer determines which specific set of
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correction factors (CFk, Figure 1) resulted when applied to the PM, in the maximum degree
of similarity (DSk, Figure 1) between the synthesized and the recorded signal (Figure 1).
This particular set is the optimizer’s output (Figure 1).
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Figure 1. Block diagram of the Physical Modeling and Optimization framework integration, showing
the input parameters and the looping procedure to output the optimal set of correction factors
resulting in the maximum similarity between the synthesized and the recorded signal.

3. Case Study: Recorder
3.1. The Physical Model

In order to demonstrate the integration of the optimization framework with PM of
musical instruments, we present the case of a recorder. The recorder constitutes a wind
instrument with a flute-like (air-jet) excitation mechanism and a cylindrical resonator. The
player produces various pitches by changing the fingering (i.e., arrangements of closed
or open toneholes), or by overblowing. The instrument in our case study is a typical
commercial recorder: Hohner’s melody recorder with baroque fingering (type 1-095.143-
1011) and eight toneholes (seven regular toneholes in the upper part of the acoustic pipe
and one fingerhole in the bottom part).

The method used for the physical modeling of the instrument is the Digital Waveg-
uides (DWGs), a technique introduced by J. Smith [11], which simulates traveling waves
by digital delay lines [12]. In this work, we have chosen to demonstrate our framework on
a computationally cheap PM that enables a fast calculation runtime of a significantly high
number of iterations during the optimization process (here 10 k, see Section 3.3). However,
every PM technique (e.g., FEM) is built upon parameters that can potentially be tuned with
the use of correction factors, hence, it can be integrated with the optimization framework.
The only prerequisite is the available computation power to enable the optimizer to per-
form several iterations. Figure 2 demonstrates the block diagram of our recorder’s PM
based on established approaches [13–15].

Recorder’s excitation phenomenon is based on the effect of an air jet blown that
strikes a sharp edge (labium) [16]. In Figure 2, we simulate the air jet traveling from the
player’s lips to the labium by a delay line (jet-delay). The mouth pressure (forming the
air-jet) is simulated as a constant pressure enriched with vibrato and noise content. In
the real world, this constant mouth pressure is not reached and released instantly thus,
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in our model, a dynamic envelope is applied to provide the duration of the attack, the
sustain, and the release. The air jet is modeled by a static non-linear element using a
sigmoid function [17]. Here we use the y = x− x3 sigmoid function as proposed in [17].
When the air blown by the player enters the instrument’s bore the air particles inside
the resonator’s cavity start to vibrate. The bore effect is simulated as a one-dimensional
DWG by using delay lines (one delay line for the right and one for the left-going part
of the wave, noted as z−M in Figure 2) [12]. The length of the digital delay lines (in
samples), which depends on the speed of the acoustic waves, corresponds to the bore’s
physical length (in meters). A more accurate modeling of wind instruments should also
take into consideration the end corrections [18,19] in order to tune the generated pitch.
However, our initial model neglects end corrections (and therefore creates a lower—than
the more accurate model—correlation due to the frequencies mismatch, see Section 3.3
and Figure 3) as it is the proposed optimization framework that chooses the optimal one
itself. The pressure waves travel from the mouthpiece along the tube towards the other
end (assumably, right-going). When reaching the end so-called the bell, a portion of the
wave is reflected towards the mouthpiece (assumably, left-going) and the other portion is
transmitted outside the instrument. The superposition of the right- and left-going pressure
waves forms a standing wave inside the resonator’s cavity. In particular, the effect of the
bell is to radiate out of the instrument the high frequencies and to reflect back the low
frequencies. This reflection is simulated as a lowpass filter, the RL(z), which is, in our case,
a first-order averaging filter. Further, to simplify the simulation, we assume that the first
open tonehole defines the effective length of the bore [20] and consequently the length of
the digital delay-line.
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Figure 2. Block diagram of the recorder’s physical model, simulated with the Digital Waveguides
Technique, based on [13–15].
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the synthesized and recorded signals in various notes for PM (blue) and PM with optimal correction
factors (orange).
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3.2. Analysis by Synthesis Model

We identified eleven internal parameters which are part of all the components of the
block diagram in Figure 1 and affect the synthesized signal in both time and frequency
domain. More specifically, three parameters affect the dynamic envelope of the mouth
pressure (the duration of the attack, the sustain, and the release), three parameters affect
the properties of the input (the frequency, the content, and the noise of the vibrato), one
parameter affects the length of the delay lines, one parameter affects the interpolation
used to achieve accurate tuning, and three parameters affect the filters’ coefficients (the
transmission of the tube into the mouth, and the reflections at both of its open ends). The
number of correction factors is, thus, set to eleven. The chosen modification type is a
multiplication (Pmodi f ied = Pinitial · CF), which, after several trials, proved to derive the
best results and enabled the setting of initial generic logical boundaries (i.e., the range of
values the optimizer is permitted to assign to the parameters in every iteration). The initial
value of all the correction factors is set to one, which corresponds to the synthesized signal
generated by the unmodified PM before the optimization framework integration. The
determination of the logical boundaries of eleven parameters is not a straightforward task.
Choosing a single modification type (in our case, this type is the multiplication) makes it
easier to deal with this task by enabling the initial setting of generic logical boundaries
as a starting point before their individual specification. These generic logical boundaries
have been set to half and double the initial values for the lower and upper boundary,
respectively. After several trials to ensure that all the extreme values are within logical
limits and unwanted alterations of the PM algorithm’s core elements are avoided, these
boundaries were set for every individual correction factor.

The core part of the optimization framework integration with the PM is the com-
parison between the synthesized and the real sound of the relative musical instrument.
To make this comparison possible, we recorded samples of the commercial Hohner
recorder mentioned above. The reference signals (nine signals for nine fingerings) are
the recordings of the Hohner recorder. The recordings took place at the audio recording
studio of the National and Kapodistrian University of Athens, Department of Informatics
and Telecommunications, using an electroacoustic chain with a flat frequency response
(microphone: SD Systems LCM 85 MK II with “LP” Preamp Power Supply, soundcard:
apogee duet, computer: MacBook air 2019). The distance (recorder–microphone) was
approximately 1m and the microphone was placed off-axis from the instrument’s bell.
We want to note at this point, that in order to cross-correlate our method’s performance,
we recorded each note of the recorder 15 times and calculated all the possible Pearson
correlation coefficients between the 15 recordings of the same note. As a reference signal
to evaluate our model we chose for each note this recording that had the highest average
Pearson correlation coefficient between itself and the rest 14 recordings of the same note.
The total average Pearson correlation coefficient was found to be 0.7, with a standard
deviation of 0.16.

The degree of similarity between the synthesized and recorded signals is defined by
the Pearson correlation coefficient (Equation (1)), which measures the linear correlation
between two variables [21] and takes values between −1 and +1 (+1 corresponds to to-
tal positive linear correlation, 0 to no linear correlation, and −1 to total negative linear
correlation). As it is here non-relevant whether the correlation is positive or negative, we
take the absolute value of this coefficient to define the objective (Equation (2)). Moreover,
considering that computational optimizers deal with minimization problems more effi-
ciently, we set our objective to output the minus absolute coefficient (Equation (2)). In
that way, the objective is introduced to the optimizer (in this work we use Nelder-Mead,
see Section 3.3) which is searching for a set of variables to minimize the objective and
thus, maximize the correlation coefficient. In this work, the objective function leads to
a non-convex optimization where the optimizer is looking for a global minimum. Thus,
the number of iterations needs to be quite big to ensure good results. The objective func-
tion takes two inputs: (i) the synthesized digital signal generated by the PM and (ii) the
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recorded reference signal generated by the recorder. Our model’s goal is to create a model
with the best signals’ match in terms of physical properties. The reason we made this
choice is that maximizing the resemblance of the reference with the synthesized signals in
terms of physical properties would, consequently, maximize the resemblance in terms of
perceptual properties.

ρS,R =
cov(S, R)

σSσR
(1)

Obj = −|ρS,R| (2)

After determining the set of the correction factors, the boundaries, and the objective,
the next step is to put the optimizer into practice. In this work, our focus is to find the
optimal correction factors to tweak the algorithm’s parameters in order for the synthesized
signal to be as close as possible to the relative instrument’s signal. The optimizer, at every
iteration, is trying a new set of variables for the modifiable parameters of the recorder’s
PM that generates a signal (synthesized signal) to be compared (correlation coefficient)
with the recorded signal (goal signal). The optimizer will minimize the objective function
for all the possible notes (fingerings) and output an optimal set of correction factors.

3.3. Results and Discussion

In this work, we studied the enhancement of the generated signal of the PM of a
Hohner melody recorder with baroque fingering using the optimization framework. We
studied the fingering system, which results from the sequential opening of the toneholes
(i.e., the one that starts with having all toneholes closed and lifting the fingers one by
one, beginning with the closest to the bell-end). The recorder’s eight toneholes result in
nine notes, which correspond to the sequence of all toneholes closed (note 1) to all open
(note 9). The proposed model’s inputs are (a) the building information, i.e., the geometrical
details to synthesize nine audio files (9 notes), (b) the nine relative recordings of the real
instrument, (c) the initial values for the correction factors along with their upper and lower
boundaries and outputs nine sets of correction factors, one individual set per note.

In order to calculate the optimal set of correction factors, we put in practice two
optimization techniques. We compared their efficiency and embedded the winner to our
model. The mathematical optimizers tested here are the Nelder-Mead (NM) [22,23] and
the Simulated Annealing (SA) [24,25], which have been both used in acoustic-related
studies [26,27]. To benchmark their performance, we run the relevant algorithms ten times
for 10 k iterations per time. After several trials, this number of maximum iterations per time
proved to be adequately high to satisfy the need for accurate tuning (the deviation between
the recorded and the synthesized signals’ pitch to be less than 10 cents). Both techniques
achieved the best costs (maximum correlation factors) of similar values (±5% maximum
deviation); however, NM was found to be more efficient than SA since it came back with
the best cost value much faster (NM: 100–400 iterations, SA 1 k–5 k iterations).

Our framework significantly enhanced the similarity between the synthesized and
the recorder signals (Figure 3). In the case of the PM synthesized signals (i.e., prior to the
optimization integration—the initial value of all the correction factors equals one), the
average Pearson correlation factor was 0.13 (the minimum and maximum are 0.03 and
0.48, respectively) and in the case of PM-OPT synthesized signals (PM integrated with the
optimization framework), the correlation factor has reached the average value of 0.67 (the
minimum and maximum are 0.59 and 0.76 respectively). The model resulted in a significant
increase in the degree of similarity (Pearson correlation factor > 0.59) for all the notes, even
for the ones with a low initial value (Pearson correlation factor < 0.1, notes 1, 3, 5, 7–9).
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The improvement in terms of the degree of similarity resulted in the synthesis of
more accurately tuned signals as per the relevant reference recorded signals (Figure 4).
The average absolute deviation of the fundamental frequency of the synthesized from the
recorded signals reduced from 40 cents in the case of PM signals, which corresponds to an
interval of almost half semitone (a half-semitone deviation is 50 cents) to only 2 cents in the
case of PM-OPT signals (which is a non-noticeable difference [28]). In 5 out of 9 notes, the
PM-OPT model led to the synthesis of perfectly tuned signals with the relevant recordings
(0 cent deviation, Figure 4 notes 2–5, 7).
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Figure 4. The average absolute deviation of the fundamental frequency of the synthesized and the
recorded signals in cents in various notes for PM (blue) and PM with optimal correction factors (orange).

Moreover, significant improvement in sound color resemblance was observed. The
partials of the synthesized and the recorded signals initially deviated (e.g., PM vs. Record-
ing case in Figure 5), and now they match (e.g., PM-OPT vs. Recording case in Figure 5). In
order to measure the sound color resemblance, we studied the matching of the recorded and
synthesized signals’ frequency content by taking into consideration the first five partials
(the fundamental and the first four overtones, Tables 1–3). The sound color resemblance
per note between the recorded and the synthesized signals is determined by their first five
partials average absolute deviation (the two columns on the right of Table 3). We can see
this value is significantly lower for all the PM-OPT deviation from Recording cases than the
corresponding PM deviation from Recording cases. The average value for all the nine notes
prior to the optimization framework integration (PM deviation from Recording) is 41 cents,
whereas, after the integration (PM-OPT deviation from Recording) diminishes to only
2 cents. For eight out of nine notes, the PM-OPT and the recording have almost identical
spectrum contents (partials average absolute deviation ≤2 cents). This improvement is
a byproduct of the precise tuning of the fundamental frequency. PM produces partials
that resemble a harmonic series, which can be found in the recordings as well. Therefore,
tuning the fundamental frequency tunes, correspondingly, the overtones.
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Figure 5. Spectral comparison of the synthesized signal without adopting the optimal correction
factors (blue line, upper plot) and with adopting the optimal correction factors (blue line, lower plot)
with the relative (note 6) recording (orange line).

Table 1. The first five partials of the recorded signals per 9 notes, in Hertz.

Note
Recorded Signals Frequency (Hz)

Fundamental 1st Overtone 2nd Overtone 3rd Overtone 4th Overtone

1 522 1046 1568 2090 2614
2 591 1183 1774 2365 2957
3 661 1322 1982 2644 3305
4 721 1439 2160 2883 3604
5 781 1560 2347 3131 3901
6 883 1767 2659 3536 4414
7 1003 2005 3011 4013 5017
8 1117 2334 3352 4469 5586
9 1213 2428 3642 4855 6070

Table 2. The first five partials of the synthesized signals without adopting the optimal correction
factors (PM) and after adopting the optimal correction factors (PM-OPT) per 9 notes, in Hertz.

Note

Synthesized Signals Frequency (Hz)

Fundamental 1st Overtone 2nd Overtone 3rd Overtone 4th Overtone

PM PM-OPT PM PM-OPT PM PM-OPT PM PM-OPT PM PM-OPT

1 511 523 1022 1045 1533 1568 2044 2091 2555 2613
2 594 591 1188 1183 1782 1774 2376 2365 2970 2957
3 668 661 1337 1322 2005 1982 2673 2643 3342 3304
4 722 721 1444 1441 2165 2162 2887 2883 3609 3603
5 824 781 1649 1563 2473 2344 3297 3125 4122 3906
6 912 884 1823 1767 2735 2651 3647 3538 4559 4415
7 1013 1003 2027 2007 3040 3010 4054 4013 5068 5017
8 1197 1111 2394 2222 3592 3333 4789 4443 5986 5554
9 1222 1214 2444 2428 3666 3622 4888 4856 6110 6073
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Table 3. The absolute deviation (in cents) of the synthesized signals, without adopting the optimal correction factors (PM)
and after adopting the optimal correction factors (PM-OPT), from the recording signals for the 9 notes, the average absolute
deviation of all the partials between the recorded and the synthesized signals for the 9 notes and the total average absolute
deviation for all the partials and notes.

Note

Deviation of Synthesized Signals from the Recorded Signals (in Cents)

Fundamental 1st Overtone 2nd Overtone 3rd Overtone 4th Overtone Partials Average

PM PM-OPT PM PM-OPT PM PM-OPT PM PM-OPT PM PM-OPT PM PM-OPT

1 37 3 40 2 39 0 39 1 39 1 39 1
2 9 0 7 0 8 0 8 8 0 8 0
3 18 0 20 0 20 0 19 1 19 1 19 0
4 2 0 6 2 4 2 2 0 2 1 3 1
5 93 0 96 3 91 2 89 3 95 2 93 2
6 56 2 54 0 49 5 54 1 56 0 54 2
7 17 0 19 2 17 1 18 0 18 0 18 1
8 120 9 120 9 120 10 120 10 120 10 120 10
9 13 1 11 0 12 10 11 0 11 1 12 2

Total average absolute deviation 41 2

4. Conclusions

In this work, we proposed a method that enables the maximization of the physical
modeling (PM) of musical instruments efficiency by applying the optimal correction factors
and presented a case study of a specific commercial recorder. PMs of musical instruments
simulate the sound production mechanism of the relative physical instruments. However,
the detailed analytical description of the phenomena governing the sound generation
mechanism to design an accurate PM of the musical instruments is not trivial. The proposed
use of the optimization framework to enhance the generated audio signal of the PM of
musical instruments helps in practice the production of more realistic PM-generated signals.
The results for the musical instrument used in our study indicate that the proposed model
enhances the degree of similarity between the synthesized and the recorded signal (the
average absolute Pearson Correlation Coefficient increased from 0.13 to 0.67), resolving
mistuning issues (the absolute deviation of the synthesized from the recorded signals’
pitches reduced from 40 cents to the non-noticeable level of 2 cents) and resulting to similar
sound color characteristics (matching overtones).

We expect that this work will motivate researchers to create more complex optimiza-
tion techniques using multiobjectives that will allow the parallel accounting of both the
physical (e.g., inharmonicity, amplitude deviation, spectrum entropy) and the perceptual
properties (e.g., pitch, loudness, roughness), as well as further validation schemes based on
listening tests. We further expect that the approach we propose with this work will further
improve the efficiency of both the existing and future PMs of musical instruments.

Author Contributions: Conceptualization, G.K.; methodology, K.B. and S.P.; software, K.B., S.P. and
D.M.; validation, K.B. and S.P.; formal analysis, K.B. and S.P.; investigation, K.B., D.M., S.P. and
G.K.; writing—original draft preparation, K.B.; writing—review and editing, S.P.; visualization, D.M.;
supervision, G.K.; project administration, G.K.; funding acquisition, G.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Regional Development Fund of the
European Union and Greek national funds through the Operational Program Competitiveness, En-
trepreneurship, and Innovation, under the call RESEARCH-CREATE-INNOVATE (project MNESIAS:
“Augmentation and enrichment of cultural exhibits via digital interactive sound reconstitution of
ancient Greek musical instruments” code: T1EDK-02823/MIS 5031683).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2021, 11, 6426 10 of 10

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allen, A.; Raghubanshi, N. Aerophones in flatland: Interactive wave simulation of wind instruments. ACM Trans. Graph. 2015,

34, 134. [CrossRef]
2. Schnell, N.; Battier, M. Introducing composed instruments, technical and musicological implications. In Proceedings of the 2002

Conference on New Interfaces for Musical Expression, Dublin, Ireland, 24–26 May 2002; Brazil, E., Ed.; National University of
Singapore: Singapore, 2002; pp. 1–5.

3. Hunt, A.; Wanderley, M.M.; Paradis, M. The importance of parameter mapping in electronic instrument design. J. New Music Res.
2003, 32, 429–440. [CrossRef]

4. Bilbao, S. Direct simulation for wind instrument synthesis. In Proceedings of the 11th International Digital Audio Effects
(DAFx-08) Conference, Espoo, Finland, 1–4 September 2008; pp. 1–8.

5. Kontogeorgakopoulos, A.; Tzevelekos, P.; Cadoz, C.; Kouroupetroglou, G. Using the CORDIS-ANIMA Formalism for the Physical
Modeling of the Greek Zournas Shawm. In Proceedings of the International Computer Music Conference (ICMC08), Belfast, UK,
24–29 August 2008; pp. 395–398.

6. Tzevelekos, P.; Georgaki, A.; Kouroupetroglou, G.T. HERON: A Zournas Digital Virtual Musical Instrument. In Proceedings
of the 3rd ACM International Conference on Digital Interactive Media in Entertainment and Arts (DIMEA), Athens, Greece,
10–12 September 2008; pp. 325–359. [CrossRef]

7. Tzevelekos, P.; Perperis, T.; Kyritsi, V.; Kouroupetroglou, G. A Component-Based Framework for the Development of Virtual
Musical Instruments Based on Physical Modeling. In Proceedings of the 4th Sound and Music Computing Conference, Lefkada,
Greece, 11–13 July 2007; Spyridis, C., Georgaki, A., Kouroupetroglou, G., Anagnostopoulou, C., Eds.; National and Kapodistrian
University of Athens: Athens, Greece, 2007; pp. 30–37.

8. Pfeifle, F.; Bader, R.M. Real-Time Finite-Difference Method Physical Modeling of Musical Instruments Using Field-Programmable
Gate Array Hardware. J. Audio Eng. Soc. 2015, 63, 1001–1016. [CrossRef]

9. Smith, J.O., III. Viewpoints on the history of digital synthesis. In Proceedings of the International Computer Music Conference
(ICMC 1991), Montreal, QC, Canada, 16–20 October 1991; pp. 1–10.

10. Beauchamp, J.W. Analysis and Synthesis of Musical Instrument Sounds. In Analysis, Synthesis, and Perception of Musical Sounds.
Modern Acoustics and Signal Processing; Beauchamp, J.W., Ed.; Springer: New York, NY, USA, 2007; pp. 1–89. [CrossRef]

11. Smith, J.O., III. Physical Modeling Using Digital Waveguides. Comput. Music J. 1982, 16, 74–91. [CrossRef]
12. Scavone, G. Delay-Lines and Digital Waveguides. In Springer Handbook of Systematic Musicology; Bader, R., Ed.; Springer:

Berlin/Heidelberg, Germany, 2018; pp. 259–272. [CrossRef]
13. Carpenter, T.G.F. Developing an Audio Unit Plugin Using a Digital Waveguide Model of a Wind Instrument. Master’s Thesis,

Acoustics and Music Technology, University of Edinburgh, Edinburgh, UK, 2012.
14. Smith, J.O. Digital waveguide architectures for virtual musical instruments. In Handbook of Signal Processing in Acoustics; Havelock,

D., Kuwano, S., Vorländer, M., Eds.; Springer: New York, NY, USA, 2008; pp. 399–417. [CrossRef]
15. Scavone, G.P. An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues

and Digital Waveguide Modeling Techniques. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1997.
16. Fletcher, N.H.; Rossing, T.D. The Physics of Musical Instruments, 1st ed.; Springer: New York, NY, USA, 1991; pp. 449–454.
17. Cook, P.R. A meta-wind-instrument physical model, and a meta-controller for real-time performance control. In Proceedings of

the International Computer Music Conference, San Jose, CA, USA, 14–18 October 1992; Michigan Publishing: Ann Arbor, MI,
USA, 1992; pp. 273–276.

18. Fletcher, N.H. Air flow and sound generation in musical wind instruments. Ann. Rev. Fluid Mech. 1979, 11, 123–146. [CrossRef]
19. Wang, S. Wavelength and end correction in a recorder. ISB J. Phys. 2009, 3, 1–5.
20. Wolfe, J. The acoustics of woodwind musical instruments. Acoust. Today 2018, 14, 50–56.
21. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer Topics in

Signal Processing; Benesty, J., Kellermann, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. [CrossRef]
22. Singer, S.; Nelder, J. Nelder-mead algorithm. Scholarpedia 2009, 4, 2928. [CrossRef]
23. Luersen, M.A.; Le Riche, R. Globalized Nelder–Mead method for engineering optimization. Comput. Struct. 2004, 82, 2251–2260.

[CrossRef]
24. Van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated annealing. In Simulated Annealing: Theory and Applications; Van Laarhoven, P.J.M.,

Aarts, E.H.L., Eds.; Springer: Dordrecht, The Netherlands, 1987; pp. 7–15. [CrossRef]
25. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
26. Polychronopoulos, S.; Memoli, G. Acoustic levitation with optimized reflective metamaterials. Sci. Rep. 2020, 10, 4254. [CrossRef]

[PubMed]
27. Bakogiannis, K.; Polychronopoulos, S.; Marini, D.; Terzēs, C.; Kouroupetroglou, G.T. ENTROTUNER: A computational method

adopting the musician’s interaction with the instrument to estimate its tuning. IEEE Access 2020, 8, 53185–53195. [CrossRef]
28. Fastl, H.; Zwicker, E. Psychoacousticss, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [CrossRef]

http://doi.org/10.1145/2767001
http://dx.doi.org/10.1076/jnmr.32.4.429.18853
http://dx.doi.org/10.1145/1413634.1413698
http://dx.doi.org/10.17743/jaes.2015.0089
http://dx.doi.org/10.1007/978-0-387-32576-7_1
http://dx.doi.org/10.2307/3680470
http://dx.doi.org/10.1007/978-3-662-55004-5_13
http://dx.doi.org/10.1007/978-0-387-30441-0_25
http://dx.doi.org/10.1146/annurev.fl.11.010179.001011
http://dx.doi.org/10.1007/978-3-642-00296-0_5
http://dx.doi.org/10.4249/scholarpedia.2928
http://dx.doi.org/10.1016/j.compstruc.2004.03.072
http://dx.doi.org/10.1007/978-94-015-7744-1
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1038/s41598-020-60978-4
http://www.ncbi.nlm.nih.gov/pubmed/32144310
http://dx.doi.org/10.1109/ACCESS.2020.2981007
http://dx.doi.org/10.1007/978-3-540-68888-4

	Introduction
	Method
	Case Study: Recorder
	The Physical Model
	Analysis by Synthesis Model
	Results and Discussion

	Conclusions
	References

