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ABSTRACT

This paper is an introduction to cage, a library for the Max
environment 1 including a number of high-level modules
for algorithmic and computer-aided composition (CAC).
The library, in the alpha development phase at the time
of writing, is composed by a set of tools aimed to ease
manipulation of symbolic musical data and solve typical
CAC problems, such as generation of pitches, generation
and processing of melodic profiles, symbolic processes in-
spired by digital signal processing, harmonic and rhyth-
mic interpolations, automata and L-systems, tools for mu-
sical set theory, tools for score generation and handling.
This project, supported by the Haute École de Musique in
Geneva, has a chiefly pedagogical vocation: all the mod-
ules in the library are abstractions, lending themselves to
be easily analyzed and modified.

1. INTRODUCTION

This article describes some of the main concepts and com-
ponents of the cage 2 library for Max, containing several
high-level modules for computer-aided composition (CAC).
Some of these modules have already been discussed in [1]
(in French); in this paper we complete the overview of
the library, and provide a more comprehensive view on its
goals.

cage is entirely based upon the bach: automated com-
poser’s helper library, which is developed by two of the
authors [2, 3]. bach is a library of about 200 Max ex-
ternals and abstractions, aimed to bring within Max a set
of ‘primitives’ for the manipulation of symbolic musical
data, along with some GUIs for their graphical represen-
tation and editing. Data within bach are invariantly repre-
sented through specialized uses of a generic data structure,
the llll (‘Lisp-like linked list’), which as the acronym sug-
gests is essentially a tree structure in the form of a nested
list, directly inspired by the Lisp programming language.
Subsequently, most bach modules are tools for low-level
manipulation of lllls (performing operations such as rota-
tions, substitutions or retrieval of single elements) or for
more complex but conceptually basic operations such as

1 http://cycling74.com
2 www.bachproject.net/cage
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constraint solving or rhythmic quantization. Differently
from bach, cage modules in general perform higher-level
tasks, with a compositional rather than strictly technical
connotation (e.g. melodic material generation, or compu-
tation of symbolic frequency modulation). Still, some ba-
sic mechanisms and principles are inherited by cage from
bach, including the fact that communication between the
different modules happens mostly by means of lllls.

Two main criteria have informed the conception of the
library.

The first is the idea at the very root of cage itself: building
a library of ready-to-use modules, implementing a num-
ber of widely used CAC processes. As a consequence, a
part of the library is openly inspired by libraries already
existing for other programs (namely the Profile [4] and
Esquisse [5, 6] libraries for Patchwork, which have been
subsequently ported to OpenMusic); on the other hand, an-
other part of the library is addressed to problems and prac-
tices typically associated with real-time interaction (such
as cage.granulate, the symbolic granulation engine).

Secondly, the project has a strong pedagogical connota-
tion 3 : all the modules of the library are abstractions, lend-
ing themselves to be easily analyzed and modified. It is not
difficult, for the user wishing to learn how to treat musical
data, to copy, edit or adjust the patches to his or her own
needs. In this regards, all the tools in the library are in-
trinsically ‘open source’: although each implemented pro-
cess is conceived for a typical, somehow standard usage,
the advanced user will easily start from these abstractions
and modify their behavior. This pedagogical connotation
is completed by the fact that the library will be thoroughly
documented by help files, reference sheets and a collection
of tutorials.

2. A REAL-TIME APPROACH TO
COMPUTER-AIDED COMPOSITION

The real-time paradigm deeply influences the nature itself
of the compositional process. For example, composers
who work in the domain of electro-acoustic music often
need the computer to react immediately to each parameter
change. Similarly, composers working with symbolic data
may wish the computer to adapt within the shortest delay
to a new configuration of the data themselves. cage’s un-
derlying paradigm is ultimately the same that informed the
bach library: creating and editing symbolic musical data
is not necessarily an out-of-time activity, but it follows the
temporal flow of the compositional process, and adapts to

3 The cage library is supported by a grant from HES-SO.
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it (see also [3, 7, 8]).

3. COMPOSITION OF THE LIBRARY

The library is composed by several families of modules. In
the following paragraphs we will briefly describe them, in
order to give an idea of the scope of the work. Of course,
there is no ambition of completeness in the choice of the
processes that have been implemented. Computer-aided
composition is a vast domain, and practices are personal
and specific to each single composer more often than not.
Still, it seems to us that some general typologies of ap-
proaches, as well as some commonly used specific oper-
ations, can be discerned. We attempted to exemplify at
least some of them, hoping that our work will be useful
to composers wishing to implement their own individual
processes and operations.

3.1 Pitch generation

The first family of modules that will be discussed is
aimed at generating pitches according to different crite-
ria: cage.scale and cage.arpeggio can generate respec-
tively scales and arpeggios within a given pitch range. The
types of chords and scales can be expressed either through
symbolic names or midicents patterns. Scale and chord
names can contain quartertones and eight-tones as well.
cage.harmser generates harmonic series starting from a
given fundamental, with an optional distortion factor.

Other modules generate pitches on a one-by-one basis:
cage.noterandom generates random notes from a given reser-
voir, optionally according to different predefined probabil-
ity weights, which can be defined, for instance, through
cage.weightbuilder; cage.notewalk generates an aleatory
path in a given reservoir, according to a list of allowed
steps. In both cases, the result of the operation is meant to
be used in combination with bach.transcribe, which will
transcribe the incoming stream of notes in real time. Also,
in both cases the randomly chosen element can be vali-
dated by the user via a lambda loop. 4

3.2 Generation and treatment of melodic profiles

A family of modules is specifically aimed at generat-
ing and treating melodic profiles, in a similar fashion to
the Profile library in OpenMusic and PatchWork [4]. A
breakpoint function can be converted in a sequence of
pitches (a melodic profile) through cage.profile.gen. This
profile can be edited in different ways: it can be com-
pressed or stretched (with cage.profile.stretch), reversed
(with cage.profile.mirror), approximated to an harmonic
grid or a scale (with cage.profile.snap), forced into a pitch
range (with cage.profile.rectify), randomly perturbed (with

4 A lambda loop in bach and cage is a symbolic feedback config-
uration: objects supporting this behavior have one or more dedicated
‘lambda’ outlets returning data for acceptance or modification; these data
are processed in a specific section of the patch whose resulting value is
fed back into a dedicated ‘lambda’ inlet of the first object. This configu-
ration is often employed within bach in order to define custom behaviors
for specific operations (e.g. a sorting criterium, or a process to be applied
to every element of an llll). The name ‘lambda’ hints to the fact that this
configuration somehow allows to pass a section of a patch as a pseudo-
argument of an object. Indeed, this is nothing more than an allusion: there
is no lambda calculus or interpreted functions involved in the process.

cage.profile.perturb) or filtered (with cage.profile.filter).
Profile filtering is achieved through application of an av-
erage, median or custom filter, the latter being definable
by the user through a lambda loop (see also Fig. 1).

Figure 1. A melodic profile is built from a function de-
fined inside a bach.slot object and sampled over 20 points.
Then, the profile is filtered by a process expressed through
a lambda loop, which operates on three-note windows;
each window is replaced by a single value, the average of
the first and last element of the window itself weighted by
the weights (1, 2). This filtering process is repeated twice.
It can be observed that, because of the windowing, the re-
sult contains four notes less than the original sampling.

3.3 Processes inspired by electro-acoustic practices

cage contains a group of modules dedicated to symbolic
emulation of processes belonging to the domains of sound
synthesis and digital audio processing.

cage.freqshift is a tool allowing transposition of materi-
als linearly on the frequency axis, as in single-sideband
ring modulation. Because of the strict similarity of the two
processes, cage.pitchshift is considered as belonging to the
same category, although a pitch shifting operation applied
to musical notation is just a simple transposition.

cage.rm and cage.fm deal respectively with ring mod-
ulation and frequency modulation. The idea underlying
these techniques, widely employed by composers associ-
ated with the spectral movement, is the following: starting
from two chords (a ‘carrier’ and a ‘modulating’ chord),
whose notes are considered as a simple sine tones, the
spectrum obtained by modulating with each other these
two groups of sinusoids is calculated. Each component
of the resulting spectrum is then represented as a note of
the resulting chord. This operation requires a number of
approximations and trade-offs which can make its result
significantly different from the actual product of the cor-
responding audio treatment: nevertheless, it is a very ef-
fective approach in generating rich harmonic families from
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simple materials, hence its compositional interest. Although
the direct inspiration for cage.rm and cage.fm is taken from
the Esquisse library [5, 6] for OpenMusic, their operational
paradigm and some computational details are different. In
particular, being conceived to work in time, these two mod-
ules can accept not only simple chords, but also chords
sequences representing variations of ‘carriers’ and ‘modu-
lating chords’ in time. In this case, the process will return a
new score containing the result of these variations in time
(see Fig. 2). For what concerns the actual internal com-
putation, the two modules take into account an estimate of
the phase oppositions generated by the modulation, and the
relative component elision, differently from what happens
in the Esquisse library. For this reason, the results of the
same process in the two environments can be significantly
different.

Figure 2. An example of frequency modulation of two
scores, achieved through the cage.fm abstraction. The ‘car-
rier’ and ‘modulating’ are on top, the result below. The
note velocity (treated as the amplitude of the correspond-
ing sinusoidal components) is represented in grayscale.

cage.virtfun returns one or more estimates of the virtual
fundamental frequency of a chord, as perceived for exam-
ple at the output of a waveshaping process. The implemen-
tation is very simple: the sub-harmonic series of the lowest
note of the chord is traversed until a frequency whose har-
monics approximate all the notes of the given chord, within
a given tolerance, is found. cage.virtfun can also be applied
to a sequence of chords in time; in this case, the result will
be the sequence of the virtual fundamentals. On the other
hand, the numerical operation performed by cage.virtfun
has a broader range of applications: it can be considered
a computation of an approximate greatest common divisor
of a set of numbers. As such, it is called for example by
cage.accrall to establish a ‘reasonable’ minimal rhythmic
unit in a non-measured score.

cage.delay and cage.looper extend the concept of delay

line with feedback in the symbolic domain. Their aim is
creating loops and repetitive structures in which the mate-
rial can be altered at each pass through a lambda loop. The
difference between the two lies in the musical unit that is
passed to the lambda loop: a single chord in cage.delay, a
whole section of the score in cage.looper. In both cases,
the delay time itself can be changed for each repetition. In
principle there is no limitation to the richness of the pro-
cesses that can be applied to the material in the lambda
loop: the musical result can therefore be much more com-
plex than a simple iteration.

cage.cascade∼ and cage.pitchfilter extend the principle
of filtering to the symbolic domain. The former applies
a chain of two-pole, two-zeros filters to a score, as the
biquad∼ and cascade∼ Max objects, by emulating the ac-
tual frequency response of a digital IIR filter. The latter
operates directly on pitches, rather than frequencies, by ap-
plying to a score a filter defined by a breakpoint function
obtained for example from a function or a bach.slot object.
In both cases, the MIDI velocity of each note is modified
according to the filter response, and notes whose velocities
fall below a given threshold are removed. Interpolation be-
tween different filter configurations in time is also possible
(see fig. 3).

Figure 3. An example of dynamic filtering of a score ob-
tained through cage.cascade∼ driven by a dynfilter slot in a
bach.slot object. Whenever the filter parameters are edited
through the interface, the result is automatically updated in
real time.

cage.granulate is a symbolic granulation engine. The pa-
rameters of the granulation are the same as in the corre-
sponding electro-acoustical process: the time interval be-
tween two grains, the size of each grain, the beginning and
the end of the temporal region from which the grain must
be extracted. Based upon these parameters, cage.granulate
fills in real time a bach.roll object connected to its outlet.

3.4 Harmonic and rhythmic interpolation,
formalization of agogics

The cage.chordinterp abstraction performs a linear harmonic
interpolation between a set of chords, through the assign-
ment of different weights to each of them. In the same
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way, a rhythmic interpolation can be obtained through the
module cage.rhythminterp.

cage.timewarp on the other hand performs a temporal dis-
tortion of a score, obtained through a function (in the usual
form of a lambda loop) that is applied to the onset of each
discrete event of the score. Among the other things, this
provides a flexible way to perform any kind and shape of
rallentando or accelerando through the definition of the ap-
propriate function - a task that is eased by the cage.accrall
abstraction, allowing to express agogics through a set of
high-level parameters such as total resulting duration or
starting and ending speed.

Figure 4. An example of temporal distortion performed
through cage.timewarp. The function in the lambda loop
associates time in the original score (above), represented
on the x-axis, to time in the resulting score (below), repre-
sented on the y-axis.

3.5 Automata, L-systems, etc.

The cage.chain abstraction implements one-dimensional
cellular automata and L-systems. It performs rewrites of
a given list according to a set of rules defined by the user
through either messages or a lambda loop. Substitutions
can take place on single elements (e.g. a certain letter or
note is substituted by a list of letters or notes), or overlap-
ping sequences of elements with a fixed length (e.g., each
couple of elements is replaced by one or more different
elements); in the latter case, cage.chain will manage the
behavior at the boundaries according to the values of some
specific attributes (pad, align). In summary, this module
makes it easy to build cellular automata, or fractals by sub-
stitution.

cage.life deals with two-dimensional cellular automata
(the most famous example being John Conway’s ‘game of
life’). The rules for these automata are defined through a

lambda loop. The order of the substitution sub-matrices
can be defined by the user as well.

An abstraction closely related to the two previous ones
is cage.lombricus, implementing a way to build rule-based
generative systems. The module accepts a set of starting
elements grouped into families, with a weight assigned to
each family. The task of the abstraction is creating a se-
quence of an arbitrary number of elements, trying to match
the relative number of occurrences of elements of each
family to the weight associated to the family itself. At run-
time, the lambda loop of the abstraction is fed with pro-
posals of elements to be chained to the existing sequence,
along with the whole sequence built so far; each proposal
can be refused, or accepted and assigned a score according
to custom-definable rules: among the accepted elements,
a ‘winner’ will be chosen according to the score and the
weights of the family to which it belongs. If at some point
a suitable element cannot be found, the abstraction is capa-
ble to backtrack on the sequence built so far, and substitute
a previously chosen element with a different one with a
lower score but potentially allowing a longer chain to be
built. It should also be pointed out that the element needs
not to be copied literally in the resulting sequence: for ex-
ample, the user might want to provide the system with a
set of intervals as starting elements, and obtain a melodic
sequence at the end of the process: the substitution can
be performed within the lambda loop described above. In
summary, the underlying mechanism of the cage.lombricus
abstraction shares some features of cellular automata and
L-systems on one hand (in particular, a rule-based con-
structive behavior allowing rewrites), and constraint satis-
faction problems on the other (the ability to make choices
according to weights and the backtracking behavior), with-
out strictly belonging to either category. Although this pro-
cess may appear cumbersome, a thorough investigation on
our own compositional practices as well as those of other
composers (and firstly Michaël Jarrell’s) suggested us that
it is well-suited to model a wide array of real-life musical
formalization techniques.

3.6 Musical set theory tools

A group of modules in cage deals with pitch repre-
sentations typical of the set theory: cage.chroma2pcset
and cage.pcset2chroma convert between pitch class sets
and chroma vectors (see [9]); cage.chroma2centroid and
cage.centroid2chroma convert between chroma vectors
and spectral centroids, the latter being obtained through
the transform described by Harte and Sandler [10]. Go-
ing from chroma vector to centroid causes a loss of infor-
mation, therefore the conversion is not univocal: a single
chroma vector, among all those having the input vector as
their centroid, is returned.

3.7 Scores

cage contains a set of modules for the global processing
of scores: cage.rollinterp interpolates between the con-
tents of two bach.roll objects, according to an interpolation
curve or a single value in the case of static interpolation.
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Figure 5. The bottom bach.roll shows the sequence of
notes produced starting from the top bach.roll, and by
applying three steps of the substitution rule given in the
lambda loop. Such substitution rule states appends to every
couple of overlapping notes (order is 2) the same couple
transposed by one octave plus one semitone. For instance,
at the first step, the couple C4 D4 is substituted with C4
D4 C#5 Eb5, and the couple D4 E4 is substituted with D4
E4 Eb5 F5, yielding the sequence C4 D4 C#5 Eb5 D4 E4
Eb5 F5; the following steps do the same with the result ob-
tained from the previous step. cage.chain then outputs the
whole sequence of steps; only the ending one is displayed.

cage.envelopes represents a family of functions synchro-
nized to the total duration of a score, aiding real-time edit-
ing of the score with respect to the values of the curves at
each instant. cage.scissors divides the score contained in a
bach.roll object according to vertical (time) and horizontal
(voice) split points, and returns a matrix containing the re-
sulting score excerpts. cage.glue performs the opposite op-
eration: fills a single bach.roll with the contents of a matrix
of smaller scores, according to the temporal and voice dis-
position implicit in the matrix itself, or to an explicitly set
disposition. cage.ezptrack takes a sequence of chords and
attempts to reconstruct musical voices, in a similar way to
what partial trackers do with harmonic analysis data. (see
Fig. 6).

3.8 SDIF files support

A set of modules in cage is designed to ease the reading
and writing of SDIF files [11, 12]. This family contains
sub-families for some of the most common analyses and
descriptors, namely fundamental frequency, peaks, partial
tracking, markers.

Starting from version 0.7.4, bach supports reading and
writing SDIF files through the bach.readsdif object, a low-

Figure 6. Partial tracking on sequences of chords can be
quickly and easily be obtained via cage.ezptrack. Here,
the pitch threshold to link two consecutive peaks is 50mc.
Notice the presence of pitch breakpoints in at the end of the
lower bach.roll, due to the fact that at the end of the upper
roll some notes were not perfectly snapped to the semitone
grid.

level tool reading all the information contained in a SDIF
files and structuring it into an llll, and the corresponding
bach.writesdif object, allowing to write SDIF files start-
ing from their llll representation. This representation is
complete, meaning that feeding the output of bach.readsdif
into bach.writesdif produces an SDIF file perfectly equiva-
lent, if not identical, to the original one. On the other hand,
this very completeness makes the representation itself dif-
ficult for the user to manipulate.

For this reason, cage includes a set of modules imple-
menting a number of basic operations upon the contents of
SDIF files. Some directly convert SDIF data into bach.roll
syntax, for instance cage.sdif.ptrack.toroll (see Fig. 7).
Other abstractions rearrange SDIF data in an easily acces-
sible form. As an example, cage.sdif.fzero.unpack looks
for 1FQ0 (fundamental frequency estimate) frames and out-
puts onsets, frequencies, confidences, score and amplitudes
from different outlets as lllls structured by stream. Two ab-
stractions deal with partial tracking (cage.sdif.ptrack.resolve
and cage.sdif.ptrack.assemble), allowing to switch between
a time-wise and an index-wise representation of the data.

In general, we did not consider the writing of SDIF files
starting from symbolic data a common usage scenario, with
one possible exception: markers. For this reason, the only
abstraction providing a direct translation from a notation
object to a SDIF llll is cage.sdif.markers.fromroll, transfer-
ring into it all the markers of a bach.roll object, each with
its time position and name.
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Figure 7. A SDIF partial tracking analysis is imported in
a bach.roll via cage.sdif.ptrack.toroll. The lambda loop is
used to define a custom velocity mapping (if no lambda
loop is provided, a default mapping will be used).

3.9 Audio rendering

In addition to the previously described proper CAC tools,
cage contains a set of utilities aimed to make quick pro-
totyping and verification of musical solutions easier. In
particular, two modules of the cage library perform audio
rendering of bach scores: cage.ezaddsynth∼ (a basic addi-
tive synthesis engine) and cage.ezseq∼ (a basic sound file
sampler). Like bach.ezmidiplay, both are designed to be
directly connected to the ‘playout’ outlet of the bach.roll
and bach.score objects.

The additive synthesis engine addresses the need of a
quick-and-dirty audio rendering, overcoming the limita-
tions of MIDI instruments: this may be useful for exam-
ple when working with non-standard microtonal grids, or
when amplitude envelopes, panning or glissandos cannot
be ignored. Envelopes should all be defined inside slots. 5

The sampler addresses the need of using bach.roll and
bach.score as ‘augmented sequencers’: cage.ezseq∼ takes
into account file names, amplitude envelopes, panning, play-
back speed, audio filtering, playback starting time (all de-
fined inside slots). cage.ezseq∼ is also capable to preload
audio files, if a given directory is assigned. If requested,
the cage.ezseq∼ module can transpose each sample with-
out temporal alteration (via the gizmo∼ Max object) ac-
cording to the pitch of the associated note.

4. CONCLUSIONS

At the time of writing, the library is in an ongoing phase
of development. A public alpha version will be available
in May 2014: not all the features might be implemented
at this point, and the documentation will not be complete.
Nonetheless, most modules will already be functional. The
first complete version of the library will be made avail-
able in October 2014, on the occasion of a public pre-
sentation that will take place in Geneva. The library will
be freely downloadable. Starting from the academic year
2014-2015, cage will be taught within the courses of com-
position and electronic music at the Haute École de Musique
in Geneva and in a number of partner institutions.

5 Slots are metadata of various kind associated to individual notes (see
[2]).

Acknowledgments

cage is a research project taking place within the center
of electroacoustic music of the Haute École de Musique
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