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ABSTRACT

Statistical models of music can be used for classifica-
tion and prediction tasks as well as for generating mu-
sic. There are several different techniques to generate mu-
sic from a statistical model, but not all are able to effec-
tively explore the higher probability extrema of the distri-
bution of sequences. In this paper, the vertical viewpoints
method is used to learn a Markov Model of abstract fea-
tures from an existing corpus of music. This model is in-
corporated in the objective function of a variable neigh-
bourhood search method. The resulting system is exten-
sively tested and compared to two popular sampling algo-
rithms such as Gibbs sampling and random walk. The vari-
able neighbourhood search algorithm previously worked
with predefined style rules from music theory. In this work
it has been made more versatile by using automatically
learned rules, while maintaining its efficiency.

1. INTRODUCTION

Ever since the very first computer was created, the idea of
using this device to generate music has existed. Even Ada
Lovelace, the world’s first conceptual programmer who
worked together with Charles Babbage on the Difference
Engine and Analytical Engine [18], hinted at using com-
puters for automated composition around 1840:

“[The Engine’s] operating mechanism might act upon
other things besides numbers [. . . ] Supposing, for in-
stance, that the fundamental relations of pitched sounds in
the signs of harmony and of musical composition were sus-
ceptible of such expressions and adaptations, the engine
might compose elaborate and scientific pieces of music of
any degree of complexity or extent.” – [5]

Since then many researchers have worked on automatic
composition systems, both for melody harmonization (i.e.,
finding the most musically suitable accompaniment to a
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given melody) [32], generating a melodic line to a given
chord sequence or cantus firmus [22] and even generating
a full musical piece from scratch [34].

An important difference between the various music gen-
eration systems is the actual method used to generate the
music. This ranges from probabilistic methods and rule-
based systems [1, 11, 39], to constraint satisfaction meth-
ods [37] and the use of metaheuristics such as evolutionary
algorithms [25, 36], ant colony optimization [17] and vari-
able neighbourhood search (VNS) [24]. For a more com-
plete overview of existing automatic composition systems,
the reader is referred to Herremans and Sörensen [23].

A second way to differentiate between music generation
systems is the way in which they determine the quality
of the generated music. One method is to have a human
listener determine how “good” the solution is. GenJam,
a genetic algorithm that composes monophonic jazz frag-
ments given a fixed chord progression, uses this approach
[4]. The solution quality is not coded in the algorithm, but
feedback is given by a human mentor for each population
member individually. This causes a delay known as the
human fitness bottleneck and places a non-negligible psy-
chological burden on the listener [35].

To circumvent this bottleneck, most systems automati-
cally assess the quality of a musical fragment. This can
be done based on existing rules from music theory or by
learning from a corpus of existing musical pieces. The first
strategy has been applied in automatic composition sys-
tems such as those by Geis and Middendorf [17], Assayag
et al. [2] and Donnelly and Sheppard [13]. An obvious
disadvantage is that the rules of the chosen musical style
need to be formally written down. Although every musical
genre has its own rules, these are generally not explicitly
available [28]. Therefore, it is useful to automatically learn
style rules from existing music. The second method can be
considered as being more robust and expandable to other
styles. David Cope’s Experiments in Musical Intelligence
(EMI) extract signatures of musical pieces using pattern
matching with a grammar based system to understand a
specific composer’s style [31]. Xenakis [39] uses Markov
Models to control the order of musical sections in his com-
position “Analogique A”. Markov models have also been
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used to generate Palestrina counterpoint based on a given
cantus firmus with dynamic programming [15]. Allan and
Williams [1] trained hidden Markov models for harmon-
ising Bach Chorales and Whorley et al. [38] applied a
Markov model based on the multiple viewpoint method
to generate four-part harmonisations. Markov models also
form the basis for some real-time improvisation systems
[14, 29] and more recent work on Markov constraints for
generation [30].

In this paper we adopt the view that music generation can
be viewed as sampling high probability sequences from
statistical models of a music style. With a simple (first-
order) statistical model, such as the one explored in this
paper, high probability sequences might not be the best in
terms of musicality [27]. This issue will be examined in
more detail in future research of the authors, but in this
paper we focus on high probability sequences. Although
many systems are available to learn styles from existing
music, few have been combined with an efficient optimiza-
tion algorithm such as VNS [27, 12]. This is important
since generating high probability sequences from complex
statistical models containing multiple conditional depen-
dencies between variables can be a computationally hard
problem. In this research we apply the vertical viewpoints
method [7] to learn a model that quantifies how well mu-
sic resembles first species counterpoint. This model is then
used to replace the rule-based objective function in a VNS
previously developed by the authors [22].

We chose to work with simple first species counterpoint
in this paper in order to explore the theoretical concepts
of sampling. It is not the goal of this research to develop
a complete model, but evaluate the different methods to
sample from a statistical model. Section 2 of this paper
describes the statistical model used in this study and Sec-
tion 3 describes the sampling methods used. The statistical
model was chosen so that the optimal (Viterbi) solution
could be computed, allowing us to evaluate the absolute
in addition to the relative performance of various sampling
methods. In Section 4 the resulting system is extensively
tested and compared to the optimal solution and to the ran-
dom walk and Gibbs sampling methods.

2. VERTICAL VIEWPOINTS

This section describes the model that provides the prob-
abilities of each note in a first species counterpoint frag-
ment. First species counterpoint can be viewed as a se-
quence of dyads i.e., two simultaneous notes (see Fig-
ure 1). In this research the number of possible pitches is
constrained to the scale of C major and the range of the
cantus firmus, i.e., the fixed voice against which the coun-
terpoint line is composed, is constrained to 48 and 65 (in
midi pitch values) and the counterpoint ranges from 59 to
74. These constraints are based on counterpoint examples
from Salzer and Schachter [33]. This results in 110 possi-
ble dyads (11× 10).

When generating counterpoint fragments, it is essential to
consider both vertical (harmonic) and horizontal (melodic)
aspects. These two dimensions should be linked instead
of treated separately. Furthermore, in order to confront

the data sparsity issue in any corpus, abstract represen-
tations should be used instead of surface representations.
These representational issues are handled by defining a
viewpoint, a function that transforms a concrete event into
an abstract feature. In this paper the vertical viewpoints
method [7, 10] is used to model harmonic and melodic as-
pects of counterpoint.
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Figure 1: First species counterpoint example [33] and its
dyad representation.

A simple linked viewpoint is used whereby every dyad is
represented by three linked features (see Figure 2): two
melodic pitch class intervals between the two melodic
lines, and a vertical pitch class interval within the dyad.
With this representation, the second dyad b in Figure 2 is
given by the compound feature τ(b | a) = 〈2, 5, 3〉.
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Figure 2: Features (on the arrows) derived from two con-
secutive dyads a and b (bottom) form compound feature
τ(b | a) = 〈2, 5, 3〉.

Following this transformation, dyad sequences in a cor-
pus are transformed to more general feature sequences,
which are less sparse than the concrete dyad sequence for
obtaining statistics from a corpus. In the following it is de-
scribed how to create a simple first order transition matrix
(TM) over dyads from these statistics, which can imme-
diately be applied in any optimization algorithm (see Sec-
tion 3.1).

Following the method of Conklin [9], let v = τ(b | a)

a b

v = τ(b | a)

Figure 3: The probabilistic dependencies in the vertical
viewpoint model.
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be the feature assigned by a viewpoint τ to dyad b, in the
context of the preceding dyad a. Assuming the probabilis-
tic graphical model of Figure 3, the probability P (b | a) of
dyad b following dyad a can be derived as follows:

P (b | a) = P (a, b)/P (a) conditional probability
= P (b, v, a)/P (a) because P (v | b, a) = 1

= P (b | v, a)× P (v, a)/P (a) chain rule
= P (b | a, v)× P (v) independence of a and v

with the second term P (v) estimated from the corpus:

P (v) = c(v)/n

where n is the number of dyads in the corpus and c(v) is
the number of dyads in the corpus having the feature v.
To further reduce the number of parameters for training
simply to the quantities P (v), the first term P (b | a, v) is
modelled with a uniform distribution

P (b | a, v) = |{x : τ(x | a) = v}|−1

where x ranges over all 110 possible dyads.
As an example of the calculation of P (b | a), referring

to the first two dyads of Figure 2, consider the probability
of the second dyad b = [65 50] following the first dyad
a = [60 48]. Suppose that P (〈2, 5, 3〉) = 0.01687. Given
the space of possible dyads, we have

|{x : τ(x | [60 48]) = 〈2, 5, 3〉}| = 6

that is, there are 6 possible dyads

{[65 48], [65 50], [65 62], [60 48], [60 50], [60 62]}

that have the feature 〈2, 5, 3〉 in the context of dyad [60 48].
Therefore for this example:

P ([65 50] | [60 48]) = 1/6× 0.01687 = 0.0028

A complete statistical model is created by filling a transi-
tion matrix of dimension 110 × 110 with these quantities
for all possible pairs of dyads.

Given a first order transition matrix over dyads, the prob-
ability P (s) of a sequence s = e1, . . . , e` consisting of a
sequence of ` dyads is given by

P (s) =
∏̀
i=2

P (ei | ei−1) (1)

This probability will be used to create an objective func-
tion, as discussed in the following section.

3. SAMPLING SOLUTIONS FROM A
STATISTICAL MODEL

In this research generating counterpoint music is seen as
a combinatorial optimization problem, whereby the best
combination of notes needs to be found in order to produce
music that adheres to a certain style as well as possible.

Since generating dyad sequences with the best possible ob-
jective function is a computationally hard problem, a vari-
able neighbourhood search algorithm is used as it is an effi-
cient optimization method. Variable neighbourhood search
has been successfully applied to a wide range of combina-
torial problems [19] including vehicle routing [26], graph
colouring [3] and project scheduling [16]. Hansen et al.
[21] find that VNS outperforms existing heuristics and is
able to find the best solution in moderate computing time
for several problems.

In this paper, the VNS previously developed by Herre-
mans and Sörensen [22] is adapted to work with a learned
objective function. The VNS method is then compared
with two sampling methods i.e., random walk, and Gibbs
sampling. One of the reasons for using a first order Markov
model to represent first species counterpoint is that it is
possible to compute the Viterbi optimum for this problem.
This allows a thorough comparison of the sampling meth-
ods relative to each other and the optimum solution (see
Section 4.2).

3.1 Objective Function

In Section 2 a Markov model with vertical viewpoints was
described for learning the characteristics of a corpus of mu-
sical pieces. This statistical model is transformed into an
objective function that can be used to indicate the quality
of a generated fragment. High solution quality corresponds
to high probability sequences in the model.

The probability P (s) from Equation 1 is transformed into
cross-entropy since it is more convenient to use logarithms.
The sum of the logarithms is normalised by the sequence
length to obtain the cross-entropy f(s):

f(s) = − 1

`− 1

∑̀
i=2

logP (ei | ei−1) (2)

The quality of a counterpoint fragment is thus evaluated
according to the cross-entropy (average negative log proba-
bility) of the fragment computed using the dyad transitions
of the transition matrix. This forms the objective function
f(s) that should be minimized.

The Viterbi solution, the minimal cross-entropy solution,
can be computed directly from the transition matrix. This
is done by a dynamic programming algorithm, which fills
a solution matrix of dimension 110 × ` columnwise, ac-
cumulating the best partial path ending at each dyad and
sequence position in each cell. The minimal cross-entropy
is given by the minimum value within the last column of
the solution matrix.

3.2 Variable neighbourhood search

Variable neighbourhood search, or VNS, is a local search
based metaheuristic. The structure of the implemented
VNS is represented in Figure 4. The algorithm starts
from an initial fragment, in this case a fragment with ran-
domly assigned dyads from the set of allowed dyads. From
this starting fragment the VNS iteratively makes small im-
provements (called moves) in order to find a better one,
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Figure 4: Overview of the VNS.

i.e., a fragment with a lower value for the objective func-
tion. Three different move types are defined to form the
different neighbourhoods that the algorithm uses. The first
move type swaps the top notes of a pair of dyads (swap).
The change1 move changes any one dyad to any other al-
lowed dyad. The last move, change2, is an extension of the
previous one whereby two sequential dyads are changed si-
multaneously to all possible allowed dyads.

The set of all possible fragments s′ that can be reached
from the current fragment by a move type is called the
neighbourhood. The local search uses a steepest descent
strategy, whereby the best fragment is selected from the
entire neighbourhood. This strategy will quickly steer the
algorithm away from choosing fragments with zero proba-
bility dyads, but it does not strictly forbid them (transitions
with zero probability are set to an arbitrarily high cross-
entropy). A tabu list is also kept, to prevent the local search
from getting trapped in cycles.

When no improving fragment can be found by any of the
move types, the search has reached a local optimum. A
perturbation strategy is implemented to allow the search
to continue and escape the local optimum [20]. This per-
turbation move changes the pitch of a fixed percentage of
notes randomly. The size of the random perturbation as
well as the size of the tabu lists and other parameters were
set to the optimum values resulting from a full factorial
experiment on first species counterpoint [22]. The VNS
algorithm was implemented in C++ and the source code is
available online 1 .

1 http://antor.ua.ac.be/musicvns

3.3 Random walk

The random walk method [8] is a simple and common way
to generate a sequence from a Markov model. The initial
dyad is fixed (see Section 4). After that, successive dyads
are generated by sampling from the probability distribution
given by the relevant row of the transition matrix (based on
the previous dyad). That is, at each position i the next dyad
ei is selected with probability P (ei | ei−1). If there is no
next dyad with non-zero probability, the entire process is
restarted from the beginning of the sequence. Iterated mul-
tiple times, on every successful iteration, the cross-entropy
of the solution is noted if it is better than the best score so
far.

3.4 Gibbs sampling

Gibbs sampling is a popular method used in a wide vari-
ety of statistical problems for generating random variables
from a (marginal) distribution indirectly, without having
to calculate the density [6]. The algorithm is given a ran-
dom piece s generated by the random walk method above.
The following process is iterated: a random location in the
piece s is chosen and all valid dyads are substituted into
that position, each substitution producing a new piece s′

having probability P (s′). This distribution over all mod-
ified pieces is normalized, and one is sampled from this
distribution. This process is iterated with s set to the sam-
pled piece. Iterated multiple times, on every iteration the
cross-entropy of the solution is noted if it is better than the
best score so far.

4. EXPERIMENT

In order to compare the efficiency of the VNS with other
techniques an experiment was set up. Since there are no
large available corpora restricted to first species counter-
point, 1000 pieces were generated by means of the algo-
rithm with a rule-based objective function [22]. All pieces
consist of 64 dyads. These pieces were used to train the
Markov model discussed in section 2.

A number of hard constraints are imposed to better define
and limit the problem. Firstly, as discussed in Section 2,
the range is restricted to 110 dyads. Secondly, the cantus
firmus is specified and cannot be changed by the algorithm
(thus, the three methods in Section 3 consider only those
dyads compatible with the specified cantus firmus). Based
on music theory rules specified by Salzer and Schachter
[33], a third hard constraint fixes the first dyad to [60 48]
and the last two dyads to [59 50] and [60 48]. This brings
the number of possible solutions to 1061. The Viterbi so-
lution for this problem has a cross-entropy of 3.22410 (see
Table 1).

4.1 Distribution of random walk

Figure 5 shows the distribution of cross-entropy of musi-
cal sequences sampled by random walk. A total of 107

iterations of random walk sampling were performed, and
the cross-entropies (excluding those solutions which led to
a dead end during the random walk) were plotted. The
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Figure 5: The distribution of cross-entropy according to
random walk, over 107 iterations.

plot therefore shows the probability of random walk pro-
ducing some solution within the indicated cross-entropy
bin. The difficulty of sampling high probability solutions
is immediately apparent from the graph. For example, in
order to generate one solution in the cross-entropy range
of 3.5 − 3.6 (a solution still worse than the Viterbi solu-
tion), approximately one million solutions should be sam-
pled with random walk. Figure 5 also shows that even with
the large number of random walk samples taken (107), the
Viterbi solution is not found.

4.2 Performance of the algorithms

To evaluate the relative performance of the methods, the
number of transition matrix lookups (TM lookups) is used
as a complexity measure in order to compare the VNS with
random walk and Gibbs sampling. A total of 100 runs are
performed with a cut-off point of 3 × 107 TM lookups or
alternatively until the Viterbi solution is reached.

The average of the best scores of each of the 100 runs
are displayed in Table 1 per algorithm. A one-sided Mann-
Whitney-Wilcoxon test was performed to test if the results
attained by the VNS are significantly better than the ones
from the random walk and Gibbs sampling. Since the p-
values of the latter algorithms are both < 2.2 × 10−16

we can accept the alternative hypothesis which states that
the results from the VNS are lower (i.e., better) than the
ones for both random walk (RW) and Gibbs sampling
(GS). The VNS was able to find the optimal fragment
(f(s) = 3.2241) before the cut-off point of 3 × 107 TM
lookups in 51% of the cases. Neither GS nor RW were
able to reach the optimum in any of the iterations. The best
cross-entropy values reached by all three of the algorithms
during the 100 runs are displayed in Table 1.

Figure 6 shows the evolution of the average value of the
objective function for the best fragment found by the algo-
rithms over 100 runs. The ribbons on the graph indicate
the best and worst run of each algorithm. The Viterbi op-
timum is displayed as the lower horizontal line. It is clear
from the graph that VNS outperforms both GS and RW. All
three algorithms seem to start with a very steep descent in
the very beginning of the run, but GS and RW converge
faster. Gibbs sampling does perform slightly better than

random walk, but the best run is still worse than the worst
run of the VNS.

Figure 7 focuses on the first 50,000 TM lookups dis-
played in Figure 6. In the very beginning of the runs,
VNS is outperformed by the two simpler algorithms. This
is probably due to the fact that the VNS starts from a
random initial solution that allows zero-probability transi-
tions. Even so, the algorithm is able to quickly improve
these solutions. A combination of VNS with an initial
starting solution generated by a random walk could even
further improve its efficiency.
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Figure 7: Evolution of the best fragment found zoomed in
on the beginning of the runs.

5. CONCLUSION

The approach used in this research shows the possibili-
ties of combining music generation with machine learn-
ing and provides us with an efficient method to generate
music from styles whose rules are not documented in mu-
sic theory. The proposed VNS algorithm is a valid and
flexible optimization method that is able to find the frag-
ment with the best dyad transitions according to a learned
model. It outperforms both random walk and Gibbs sam-
pling in terms of sampling of high probability solutions.
The focus of this paper is on high probability (low cross-
entropy) regions, but the VNS can just as easily be applied
to sample low probability regions. In addition to the VNS
contribution, in this paper we confirmed that random walk
does not practically (only in the theoretical limit of itera-
tions) sample from the extrema (i.e., sampling the highest
probability pieces), from even a simple Markov model.

It must be mentioned that the absolute cross-entropy re-
sults presented in this paper possibly have some bias to-
wards the VNS method, because the moves used to gener-
ate the training data for the creation of the statistical model
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Viterbi random walk Gibbs sampling VNS

average n/a 3.64788 3.53426 3.24453
best 3.22410 3.44837 3.39871 3.22410

Table 1: Average and best results of 100 runs after 30 million transition matrix lookups.
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Figure 6: Evolution of the best fragment found.

are in fact the same as those used by VNS during the search
of the solution space. Therefore, we plan to test in future
research if the relative performances of the sampling meth-
ods hold up under independent training data.

The results are promising as the VNS method converges
to a good solution within relatively little computing time.
The described VNS is a valid and flexible sampling method
and has been successfully combined with the vertical view-
points method. In future research, these methods will be
applied to higher species counterpoint [23, 38, 10] with
the multiple viewpoint method [9], using more complex
learned statistical models. When generating more com-
plex music, new move types should be added to the VNS
in order to escape local optima. The consideration of more
complex contrapuntal textures will also permit the use of a
real corpus.
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species counterpoint with a variable neighbourhood
search algorithm. Journal of Mathematics and the Arts,
6(4):169–189, 2012.

[23] D. Herremans and K. Sörensen. Composing fifth
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