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ABSTRACT

The representation of α-stable distributions as scale mix-
ture of normals is exploited to model the noise in musical
audio recordings. Markov Chain Monte Carlo inference
is used to estimate the clean signal model and the α-stable
noise model parameters in a sparse linear regression frame-
work with structured priors. The musical audio recordings
were processed both as a whole and in segments by using a
sine-bell window for analysis and overlap-and-add recon-
struction. Experiments on noisy Greek folk music excerpts
demonstrate better denoising under the α-stable noise as-
sumption than the Gaussian white noise one, when pro-
cessing is performed in segments rather than in full record-
ings.

1. INTRODUCTION

Signals contaminated by outliers (e.g., impulsive noise) or
corrupted by noise generated by an asymmetric probabil-
ity density function (PDF) cannot be accurately modeled
by Gaussian statistics [1, 2]. The α-stable distributions
are more suitable to model the aforementioned phenom-
ena due to their properties, such as infinite variance, skew-
ness, and heavy tails [3, 4]. Among the α-stable distri-
butions, the symmetric ones have been extensively studied
within a Bayesian framework, since the PDF of α-stable
distributions cannot be analytically described in general. In
[5], a particular mathematical representation was exploited
to infer the α-stable parameters using the Gibbs sampler.
Monte Carlo Expectation-Maximization and Markov Chain
Monte Carlo (MCMC) methods were introduced in [6],
which were based on the representation of α-stable distri-
butions as Scale Mixture of Normals (SMiN). The SMiN
property was also exploited to model symmetric α-stable
(SaS) disturbances with a Gibbs Metropolis sampler [7].
Recently, a random walk MCMC approach for Bayesian
inference in stable distributions was introduced using a nu-
merical approximation of the likelihood function [8]. An
analytical approximation of the positive α-stable distribu-
tion based on a product of a Pearson and another positive
stable random variable was proposed in [9]. Finally, a Pois-
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son sum series representation for the SaS distribution was
used to express the noise process in a conditionally Gaus-
sian framework [10].

A growing body of research aims at extending sparsity
paradigms in order to better capture the structure of sig-
nals [11]. For audio signals, structure is a consequence of
basic acoustic laws describing resonant systems and im-
pact sounds, implying that large classes of audio compo-
nents are either sparse in the frequency domain and persis-
tent in time or sparse in time and persistent in frequency
[12]. Here, the signal is modeled by two Modified Dis-
crete Cosine Transform (MDCT) bases, one describing the
tonal parts of the signal and one describing its transient
parts [13]. Sparsity is enforced in the expansion coeffi-
cients of each MDCT base by means of binary indicator
variables with structured priors as in [13]. Alternatively,
one could employ Gabor frames and develop sparse ex-
pansions enforcing an `1 regularization to the expansion
coefficients [14]. In this paper, a SaS distribution mod-
els the noise in recordings of Greek folk songs performed
in outdoor festivities. Experimental evidence is disclosed
that demonstrates the validity of this assumption. Indeed,
both the probability-probability (P−P ) plots and the sam-
pled value of the characteristic exponent in the SaS distri-
bution indicate that the noise statistics deviate from Gaus-
sian ones. By modeling the noise by a SaS distribution, the
framework in [13], where a Gaussian white noise was as-
sumed only, is generalized. A standard MCMC technique
is used to estimate the signal and the α-stable noise pa-
rameters following similar lines to [8, 15]. Extending the
preliminary work [16], here the musical audio recordings
are processed both as a whole and in segments by using a
sine-bell window for analysis and overlap-and-add recon-
struction. The experimental results demonstrate a superior
performance for the SaS noise assumption in the overlap-
and-add reconstruction with respect to the power of the
noise remaining after denoising and the acoustic percep-
tion of the processed music recordings.

The paper is organized as follows. In Section 2 the def-
inition and the properties of the α-stable distribution are
reviewed. Section 3 is devoted to signal modeling, while
the inference of α−stable model parameters is studied in
Section 4. Experimental results are demonstrated in Sec-
tion 5 and conclusions are drawn in Section 6.
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Figure 1. PDFs of normalized unitary dispersion SaS
fα,0(1, 0) for various values of the tail constant α.

2. α−STABLE DISTRIBUTION

A random variable (RV) X is drawn from a stable law dis-
tribution fα,β(γ, δ) iff its characteristic function is given
by [3]:

φ(ω) = exp (γ ψα,β(ω) + jδω) (1)

where

ψα,β(ω) =

{
−|ω|α[1− j sign (ω)β tan πα

2 ], α 6= 1
−|ω|α[1 + j sign (ω)β log |ω|], α = 1

(2)
with −∞ < δ <∞, γ > 0, 0 < α ≤ 2, and −1 ≤ β ≤ 1.
Accordingly, a stable distribution is completely determined
by four parameters: 1) the characteristic exponent or tail
constant α , 2) the index of skewness β, 3) the scale param-
eter γ, also called dispersion, and 4) the location parameter
δ. A stable distribution with a characteristic exponent α is
called α-stable. The characteristic exponent α is a shape
parameter, which measures the “thickness” of the tails of
the density function. If a stable RV is observed, the larger
the value of α, the less likely is to observe values of the RV,
which are far from its central location. A small value of
α implies considerable probability mass in the tails of the
distribution. The index of skewness β determines the de-
gree and sign of asymmetry. When β = 0, the distribution
is symmetric about the center δ. SaS are symmetric stable
distributions with characteristic exponent α. If α 6= 1, the
cases β > 0 and β < 0 correspond to left-skewness and
right-skewness, respectively. The direction of skewness is
reversed if α = 1 [17].

The notations S(α, β, γ, δ) or fα,β(γ, δ) are often used to
denote a stable distribution with parameters α, β, γ, and δ.
The PDF of stable random variables exist and are continu-
ous, but they are not known in closed-form except the fol-
lowing three cases: 1) the Gaussian distribution S(2, 0, γ,
δ) = N(δ, 2γ2), 2) the Cauchy distribution S(1, 0, γ, δ)
and 3) the Lévy distribution S(0.5, 1, γ, δ), which admit a
closed-form PDF. For all the other cases, several estima-
tion procedures for the PDF exist that rely on moment esti-
mates or other sample statistics [4, 18]. Several SaS PDFs
are plotted in Figure 1.

The symmetric α-stable distribution is represented as a
scale of mixture of normals [19] by exploiting the follow-
ing product property of the symmetric α-stable distribu-
tion [3, 15]: Let X and Y > 0 be independent RVs with
X ∼ fα1,0(σ, 0) and Y ∼ fα2,1

(
(cos πα2

2 )1/α2 , 0
)
, then

XY1/α1 ∼ fα1·α2,0(σ, 0).

3. SIGNAL MODEL

Let lframe and nframe denote the frame length and the
number of frames. Their product equals the number of
samples, N , in an audio recording. The observed audio
signal is modeled by an underlying clean signal represented
by two layers associated to tones or transients, and the cor-
rupting noise [13]. Tones and transients are captured by
decomposing the audio signal into two types of MDCT
atoms [20], while noise is modeled as SaS noise. Let Φ1 =
[Φ1,1,Φ1,2, . . . ,Φ1,N ] ∈ RN×N be the MDCT base with
long frame length lframe1 representing the tonals and Φ2 =
[Φ2,1,Φ2,2, . . . ,Φ2,N ] ∈ RN×N be the MDCT base with
short frame length lframe2 representing the transients. For
i = 1, 2, N = lframei × nframei . The atoms of ei-
ther basis Φi,k are indexed by k = 1, 2, . . . , N , such that
k = (n − 1) lframei + j where j = 1, 2, . . . , lframei is
a frequency index and n = 1, 2, . . . , nframei is a frame
index. Let also s̃1, s̃2 ∈ RN×1 be two coefficient vectors
and e ∈ RN×1 be the noise vector comprising independent
identically distributed (i.i.d.) RVs drawn from a SaS distri-
bution with characteristic exponent α, scale γ, and location
parameter δ (i.e., e ∼ fα,0(γ, δ)). Then, the observed sig-
nal model x ∈ RN×1 is given by:

x = Φ1 s̃1 + Φ2 s̃2 + e. (3)

That is, for l = 1, 2, . . . , N , the lth element of the observed
signal in the time domain is expressed as

xl =
N∑
k=1

Φ1,l,k s̃1,k +
N∑
k=1

Φ2,l,k s̃2,k + el (4)

where Φi,l,k is the lth element of Φi,k ∈ RN×1, i = 1, 2
and k = 1, 2, . . . , N . The product property of the SaS
distribution [3] suggests that the el are equivalently repre-
sented by a Gaussian RV conditionally independent on the
auxiliary positive stable RV ρk [15]:

el ∼ N (δ, ρlγ
2) ,ρl ∼ fα/2,1

(
2
(

cos
πα

4

)2/α
, 0

)
. (5)

The two coefficient vectors s̃1 and s̃2 are sparse, since the
clean audio signal contains a limited number of frequen-
cies. The sparsity in coefficients s̃i,k, is modeled by means
of indicator binary random variables gi,k ∈ {0, 1}. When
gi,k = 1, the corresponding s̃i,k has a normal distribution.
Otherwise, s̃i,k is set to zero enforcing sparsity to this coef-
ficient [13]. The parameters of the underlying clean signal
model are estimated by means of MCMC methods.

3.1 MCMC Inference

Let θ collectively refer to the set of parameters to be sam-
pled from their posterior distribution using the following
MCMC scheme [13].

1. Alternate sampling of (g1, s̃1) and (g2, s̃2).
The parameters (g1, s̃1) and (g2, s̃2) are sampled one
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after the other in an alternating fashion. The likelihood
of the observed audio signal x is written as follows

p(x|θ) ∼ exp

(
− 1

2γ2

∥∥∥∥Σρ(x−Φ1s̃1 −Φ2s̃2)

∥∥∥∥2
)
(6)

where Σρ is a diagonal matrix with diagonal elements
[1/
√
ρ1, . . . , 1/

√
ρN ] and ‖ · ‖ is the `2 norm.

2. Updating of (gi, s̃i) using Gibbs sampling.
Let x̃i|−i be either x̃1|2 = Φ>1 (x − Φ2s̃2) or x̃2|1 =

Φ>2 (x −Φ1s̃1), and ẽi = Φ>i e. s̃i,k is given a hierar-
chical prior described by p(s̃i,k) = (1− gi,k)δ0(s̃i,k) +
gi,kN (s̃i,k|0, vi.k) with δ0(·) being the Dirac delta func-
tion, and vi,k having a conjugate inverse Gamma prior,
p(vi,k) = IG(vi,k|ai, hi,k). hi,k is a parametric fre-
quency profile expressed for each frequency index j =
1, . . . , lframei by a Butterworth low-pass filter with fil-
ter order νi, cut-off frequency ωi, and gain ηi [13]. Then,
a Gibbs sampler is implemented that samples (s̃i,k, gi,k)
jointly. Denoting by gi,−k the set

{gi,1, . . . , gi,k−1, gi,k+1, . . . , gi,N}

and θgi the set of Markov probabilities for gi, gi,k at
the tth iteration, g(t)i,k, is sampled from p(gi,k|gi,−k, θgi ,

vi, ρlγ
2, x̃i|−i,k) and s̃(t)i,k is sampled from p(s̃i,k|g(t)i,k,

vi, ρlγ
2, x̃i|−i,k). A hypothesis testing problem is set to

estimate the first posterior probability for gi,k [21]:

H1 : gi,k = 1⇐⇒ x̃i|−i,k = s̃i,k + ẽi,k (7)
H0 : gi,k = 0⇐⇒ x̃i|−i,k = ẽi,k. (8)

The following probabilities are used to draw values for
gi,k:

p(gi,k = 0|gi,−k, θgi , vi,k, ρlγ2, x̃i|−i,k) =
1

1 + τi,k

p(gi,k = 1|gi,−k, θgi , vi,k, ρlγ2, x̃i|−i,k) =
τi,k

1 + τi,k
(9)

where

τi,k =

√
ρlγ2

ρlγ2 + vi,k
exp

(
x̃2i|−i,kvi,k

2ρlγ2(ρlγ2 + vi,k)

)

×p(gi,k = 1|gi,−k, θgi)
p(gi,k = 0|gi,−k, θgi)

. (10)

The posterior distribution for s̃i,k is given by

p(s̃i,k|gi,k, vi, ρlγ2, x̃i|−i,k) = (1− gi,k)δ0(s̃i,k)

+gi,kN
(
s̃i,k|µs̃i,kσ2

s̃i,k

)
(11)

where σ2
s̃i,k

=
(

1
ρlγ2 + 1

vi,k

)−1
and µs̃i,k =

(σ2
s̃i,k

ρlγ2

)
x̃i|−i,k.

3. Updating of vi using Gibbs sampling.
The conditional posterior distribution of vi,k is given by
p(vi,k|gi,k, s̃i,k, hi,k) = (1 − gi,k) IG(vi,k|ai, hi,k) +

gi,k IG
(
vi,k

∣∣∣∣ 12 + ai,
s̃2i,k
2 + hi,k

)
[13].

4. Updating of ρlγ2 using Gibbs sampling.

p(ρlγ
2 |̃s1, s̃2,x) = IG

(
ρlγ

2|aρlγ2 +N/2,.

bρlγ2 + (‖Σρ(x−Φ1s̃1 −Φ2s̃2)‖2)/2
)
.(12)

5. Updating of ηi using Gibbs sampling.
The gain parameter ηi of the Butterworth filter is given a
Gamma conjugate prior, p(ηi|aηi , bηi) = G(ηi|aηi , bηi)
[13].

The full posterior distribution of the gain parameter ηi is

p(ηi|vi) = G
(
ηi

∣∣∣∣Nai + aηi ,
∑
k

1

1+
(
j−1
ωi

)νi
vi,k

+ bηi

)
[13].

6. Updating of Pi,00, Pi,11, and π2.
The indicator variables of the first basis corresponding
to tonal parts are given a horizontal prior structure and
are modeled by a two-state first-order Markov chain
with transition probabilities P1,00 and P1,11 considered
equal for all frequency indices [13]. The initial distribu-
tion π1 = P (g1,(j,1) = 1)) is its stationary distribution,
π1 =

1−P1,00

2−P1,11−P1,00
. The transition probabilities P1,00

and P1,11 are given Beta priors B(P1,00|aP1,00
, bP1,00

)
and B(P1,11|aP1,11 , bP1,11), respectively. The indicator
variables of the second basis corresponding to transient
parts are given a vertical structure. The corresponding
transition probabilities P2,00 and P2,11 are considered
equal for all frames and are given Beta priors B(P2,00|
aP2,00 , bP2,00) and B(P2,11|aP2,11 , bP2,11) as well. The
initial distribution π2 = P (g2,(1,n) = 1) is learned
given a Beta prior B(π2|aπ2

, bπ2
).

The posterior distributions of Pi,00, Pi,11 and π2 are es-
timated by means of the Metropolis-Hastings (M-H) al-
gorithm as described in [13] with corresponding pro-
posed Beta distributions.

4. SAS MODEL PARAMETER ESTIMATION

Similarly to the signal model, in order to estimate the un-
known SaS parameters of the noise model (5), we sam-
ple from the posterior distribution of the parameters θ =
{α, γ, δ} using MCMC methods with appropriate conju-
gate priors chosen for the model parameters.

4.1 MCMC Inference

1. Updating parameters γ and δ using Gibbs sampling.
The conditional posterior distribution for the location
parameter δ with a Gaussian conjugate prior [16] is:

N
(

1
γ2

∑N
l=1

el
ρl

+σδmδ
1
γ2

∑N
l=1

1
ρl

+σδ
, 1

1
γ2

∑N
l=1

1
ρl

+σδ

)
[15].

The full conditional for γ2, that has an inverse Gamma
conjugate prior [16], is the inverse Gamma distribution
IG
(
a0 + N

2 ,
1
2

∑N
l=1(el − δ)2 + b0

)
[15].

2. Updating the parameter α using Metropolis sampling.
The M-H algorithm [22, 23] is used to estimate the pa-
rameter α, since the corresponding conditional distribu-
tion for α is unknown.
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(a) At each iteration t a candidate point αnew for α
is generated from a proposal symmetric distribution
q(·|·). That is, αnew ∼ q(αnew|α(t)).

(b) U is generated from a uniform (0, 1) distribution.

(c) If U ≤ A(αnew|α(t)) then αnew is accepted, other-
wise αnew is rejected. That is, the candidate point
αnew is accepted with probability min {1, A}. Given
that the proposal distribution q(·|·) is symmetrical
and considering a uniform prior, p(α|α′) = 1

α′ =
1
2 , 0 < α ≤ 2, the acceptance/rejection ratio A is

given by A = min
{

1,
∏N
l=1 p(el|α

new,0,γ,δ)∏N
l=1 p(el|α(t),0,γ,δ)

}
where

p(el|αnew, 0, γ, δ) and p(el|α(t), 0, γ, δ) are calcu-
lated for the probability density function as in [3,
24] 1 .

3. Estimating auxiliary variable ρl with rejection sam-
pling.

Rejection sampling is used to sample from the posterior
distribution

p(ρl|el, γ, δ) ∝ N (el|δ, ρlγ2)·

· fa/2,1
(
ρl

∣∣∣∣2(cos
πα

4

)2/α
, 0

)
. (13)

The likelihood forms a valid rejection function as it is

bounded from above p(el|δ, ρlγ2) ≤ exp (− 1
2 )√

2π|el−δ|
. Hence,

the following rejection sampler can be used to draw
samples from ρk [15]:

i. Samples are drawn from the positive stable distribu-
tion ρl ∼ fa/2,1

(
2
(
cos πα4

)2/α
, 0
)

.

ii. Samples are drawn from the following uniform dis-
tribution ul ∼ U

(
0, 1√

2π|el−δ|
exp

(
− 1

2

))
.

iii. If ul > p(el|δ, ρlγ2) go to step i.

5. EXPERIMENTAL RESULTS

4 noisy musical excerpts (' 48s long each) from Greek
folk songs recorded in outdoor festivities were used. In all
excerpts, a clarinet and a drum are playing. The songs were
sampled at 44.1 kHz resulting in T = 221 = 2097152 sam-
ples for each song. They were also segmented in 17 and
67 “superframes” with 131072 and 32768 samples each,
respectively. In both cases, the superframes were over-
lapping by 1024 samples. A sine-bell window was used
for analysis and overlap-and-add reconstruction of the full
denoised signals. The denoising algorithm was tested for
restoring the excerpts as a whole as well as restoring the
superframes in every excerpt for the following parameter
values: (a) lframe1 = 1024 and lframe2 = 128, resulting
in nframe1 = 2048 and nframe2 = 16384 frames, respec-
tively. (b) The Butterworth filter parameters were respec-
tively set to ωi = lframei/3 and ν1 = 6 and ν2 = 4. (c)
ηi and ρlγ2 were chosen to yield Jeffreys non-informative

1 http://www.mathworks.com/matlabcentral/fileexchange/
37514-stbl-alpha-stable-distributions-for-matlab/content/STBL_
CODE/stblpdf.m

distributions. (d) The hyperparameters for Pi,00, Pi,11 and
π2 were set to aPi,00 = 50, aPi,11 = 1, aπ2 = 1, and
bπ2

= 5000. (e) The Gibbs samplers described in Sec-
tions 3 and 4 were run for 300 iterations with a burn-in
period of 240 iterations. The clean signal was estimated
by s(MMSE) = Φ1 s̃

(MMSE)
1 + Φ2 s̃

(MMSE)
2 , where

MMSE stands for the Minimum Mean Square Error es-
timates of s̃1 and s̃2, which were computed by averaging
their values in the last 60 iterations of the sampler.

The performance of the denoising algorithm is measured
by means of the overall output Noise Index (NI) [16],
which expresses the ratio of the original noisy signal to
the estimated noise, i.e.,

NIdb = 20 log10

‖x‖2

‖x− s(MMSE)‖2
(14)

The smaller NI value implies the higher noise power re-
moval and thus a better denoising performance. The out-
put NI values measured for the algorithm developed in
Section 3, when α-stable noise residual is assumed in (3),
are listed in Table 1 for the musical excerpts processed
both as a whole as well as in segments using overlap-and-
add reconstruction. In the same table, the output NI val-
ues measured for the original algorithm proposed in [13]
that resorts to Gaussian noise residuals, are included. As
can be seen in Table 1, the assumption for a SaS noise
residual in (3) and the modifications made due to this as-
sumption in the framework proposed in [13] yields better
denoising than the assumption of a Gaussian white-noise
residual. Especially, for the SaS noise residual assump-
tion, the denoising performance is considerably improved
when the musical excerpts are processed in segments and
overlap-and-add reconstruction, while the denoising per-
formance improvement when assuming a Gaussian white-
noise residual is negligible.

The aforementioned conclusions are also verified by lis-
tening to the denoised musical excerpts 2 . When a Gaus-
sian white noise residual is assumed, the processed au-
dio files still contain a considerable amount of recording
noise together with some new artifacts. When a SaS noise
residual is assumed, the recordings are free from recording
noise, but some cracks are inserted.

In Figure 2, the significance maps are depicted, when the
fourth Greek folk song is processed by the proposed al-
gorithm that resorts to SaS noise residual (a1-a2) and the
algorithm in [13] that resorts to a Gaussian noise residual
(b1-b2). By comparing Figure 2(a1) and Figure 2(b1), it
is seen that the proposed variant for the tonal layer yields
similar results with the original algorithm in [13]. How-
ever, the performance of the two algorithms significantly
differs for the transient layer, since more artifacts are pres-
ent, when a Gaussian noise residual is assumed (Figure 2
(b2)) than when a SaS stable noise residual is assumed in
the proposed variant of the algorithm in [13] (Figure 2(a2)).

Spectrograms of a 6s long excerpt extracted from the 4th
song are shown in Figure 3. The spectrogram of the raw
recording is shown in Figure 3(a). The spectrograms of the

2 https://www.dropbox.com/sh/jz65g0tgx5q05j5/
e4vktfFvxl
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Ind. Song SaS noise Gaussian white noise
no oa oa 1 oa 2 no oa oa 1 oa 2

1 Kalonixtia (Good night) 35.0 26.6 29.8 48.5 48.4 48.2
2 Loukas (Luke) 39.0 26.5 29.7 51.7 50.8 50.7
3 To endika skorpio (Scatter at

11 o’ clock)
31.7 27.2 31.5 49.2 48.9 49.1

4 Sirto Panagioti (Panagiotis’
Syrtos)

38.8 26.4 29.1 47.1 47.3 47.4

5 Paulos Milas (Paulos Melas) 33.7 27.3 30.0 47.7 47.5 47.4

Table 1. Output NI values of the proposed algorithm for SaS noise residual and the algorithm in [13] for Gaussian white
noise residual applied on the musical excerpts processed as a whole (no oa) and in superframes by means of overlap-and-add
reconstruction (oa 1: 131072 samples long, and oa 2: 32768 samples long).
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Figure 2. Significance maps of the selected coefficients in Φ1 and Φ2 bases for the musical excerpt 4. The maps show the
MMSE estimates of the noise indicator variables g1 and g2 for: (a1)-(a2) SaS noise residual and (b1)-(b2) Gaussian white
noise residual in (3). The values range from 0 (white) to 1 (black).

denoised recordings that were reconstructed by the overlap-
and-add method, when either a Gaussian or a SaS noise
residual is assumed are shown in Figures 3(b) and (c). In
the reconstruction, 131072 samples long superframes were
employed. The inspection of Figure 3(c) reveals the supe-
rior denoising performance when a SaS noise residual is
assumed.

The MCMC inference for the SaS parameters is shown in
Figure 4, where the values of the characteristic exponent
α and the estimated standard deviation

√
ρlγ of the SaS

noise residual averaged across the last 60 iterations of the
Gibbs sampler are depicted for each segment of the musi-
cal excerpt reconstructed by means of the overlap-and-add
method. The corresponding mean values are: α ' 0.2 and
α ' 0.25 for the overlap-and-add with 131072 and 32768
samples, respectively, and

√
ρlγ ' 2.4 and

√
ρlγ ' 2.6

for the overlap-and-add with 131072 and 32768 samples,
respectively. The mean values for the stable parameter δ
are of the order of 10−4 in all cases, as expected. The
sampled values of the characteristic exponent indicate a
strong deviation from the Gaussian statistics correspond-
ing to α = 2.

Furthermore, three PDFs were tested for modeling the
noisy segments of recordings, namely the Gaussian, the
Student-t, and the SaS. The P − P plots were used for
that purpose. Let F () denote the cumulative density func-
tion associated to a model. For estimates of location and
scale parameters, µ̂ and σ̂, a P − P plot is defined by the
set of points (ξl, F (

x(l)−µ̂
σ̂ ) with l = 1, 2, . . . , N , where

ξl = l
N+1 and x(l) are the observations arranged in ascend-

ing order of magnitude, i.e., x(1) ≤ x(2) ≤ . . . ≤ x(N). A
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Figure 3. Spectrograms of a 6s long excerpt from the 4th excerpt for the: (a) Original recording. (b) Denoised recording
reconstructed by overlap-and-add, when a Gaussian noise residual is assumed and segments of 131072 samples were
employed. (c) Denoised recording reconstructed by overlap-and-add, when a SaS noise residual is assumed and segments
of 131072 samples were employed.
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Figure 4. Sampled values of the characteristic exponent
α and the standard deviation

√
ρlγ of the SaS noise, av-

eraged across the iterations of the Gibbs sampler for each
superframe of the overlap-and-add method.

strong deviation of the P − P plot from the main diago-
nal in the unit square indicates the the model assumed is
incorrect (or the location and scale parameters are inaccu-
rate). The P − P plots from the aforementioned models
are shown in Figure 5. It is seen that the P −P plot for the
SaS model lies much closer to the main diagonal than that
of the Gaussian and the Student-t models.

All the experiments were run on a Mac Core 2 Duo run-
ning at 2.4 GHz with 8 GB RAM. On average, in the over-
lap-and-add case for the signal model with SaS noise resid-
ual, it took approximately 38 min for each 131072 sam-
ples long superframe to be processed and 25 min for each
32768 samples long superframe, resulting in approximately
10 hours and 27 hours of processing time, respectively.
When the song was processed as a whole it took around
11 hours. However, the greater memory requirements in
the latter case compared to those of the overlap-and-add
method make the latter method with 131072 samples long
superframe a good compromise between speed and mem-
ory requirements. Not to mention that the overlap-and-add
method can be exploited for parallel processing. The corre-
sponding processing times for the signal model with Gaus-
sian white noise residual are considerably smaller (i.e., 2
min for 131072 samples long superframes, 1 min for 32768
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a−Stable
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Student−t

Figure 5. P−P plot for noisy observations extracted from
song 4 in Table 1 (Sirto Panagioti).

samples long superframes and 45 min for the full record-
ing), since no additional effort is needed to estimate the
SaS model parameters, and especially ρl.

6. CONCLUSIONS

A musical audio denoising technique has been proposed
where the music signal is modeled by two MDCT bases
in the frequency domain and the residual noise is modeled
by means of an α-stable distribution. MCMC inference
has been used to estimate all the parameters. The experi-
mental results on musical excerpts from raw noisy record-
ings of Greek folk songs processed either as a whole or in
superframes and overlap-and-add reconstruction demon-
strate that the α-stable noise assumption is more suitable
than the Gaussian white noise one. Moreover, the overlap-
and-add method reduces memory requirements. The pro-
posed method can be exploited to denoise old recordings
maintained by cultural archives, music recording and pub-
lishing companies, or broadcasting corporations.
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