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SUMMARY Synthetic speech usually suffers from bad F0 contour sur-
face. The prediction of the underlying pitch targets robustly relies on
the quality of the predicted prosodic structures, i.e. the corresponding se-
quences of tones and breaks. In the present work, we have utilized a linguis-
tically enriched annotated corpus to build data-driven models for predicting
prosodic structures with increased accuracy. We have then used a linear re-
gression approach for the F0 modeling. An appropriate XML annotation
scheme has been introduced to encode syntax, grammar, new or already
given information, phrase subject/object information, as well as rhetorical
elements in the corpus, by exploiting a Natural Language Generator (NLG)
system. To prove the benefits from the introduction of the enriched input
meta-information, we first show that while tone and break CART predic-
tors have high accuracy when standing alone (92.35% for breaks, 87.76%
for accents and 99.03% for endtones), their application in the TtS chain
degrades the Linear Regression pitch target model. On the other hand, the
enriched linguistic meta-information minimizes errors of models leading to
a more natural F0 surface. Both objective and subjective evaluation were
adopted for the intonation contours by taking into account the propagated
errors introduced by each model in the synthesis chain.
key words: prosody modeling, text-to-speech, linguistic meta-information,
synthetic prosody evaluation

1. Introduction

One of the most important tasks in Text-to-Speech (TtS)
synthesis is the prosody generation for a given utterance.
Prosody construction is a complex process that involves the
analysis of several linguistic and acoustic phenomena. Tra-
ditionally ([1], [2]), this involves the following modules:

part-of-speech→ syntactic tree→ breaks→ pitch accents
→ boundary tones→ F0 pitch targets

Each of these modules either generates or predicts a set of
features to be used by their successors in the TtS chain [1].
The rule-driven modeling approaches are generally difficult
to write, to adapt to new domains and new feature sets, fail to
capture the richness of human speech in cases of acoustic el-
ements such as tones (pitch accents and boundary tones) and
usually provide the F0 target module with poor input. On
the other hand, machine learning planning can yield more
realistic results provided that the size of the learning data
increases along with the size of the selected features and

Manuscript received July 1, 2004.
Manuscript revised October 14, 2004.
†The authors are with the Department of Informatics and

Telecommunications, University of Athens, Panepistimiopolis,
Ilisia, GR-15784, Athens, Greece.

a) E-mail: koupe@di.uoa.gr
DOI: 10.1093/ietisy/e88–d.3.510

their variability [3].
All the above mentioned modules are usually prone

to errors. For instance, part-of-speech (POS) identification
scores 95% in most European languages [4], while syntax
and metric trees are hard to construct. In contrast, the gener-
ation of tones and prosodic phrasing from high level linguis-
tic input produces better prosody than plain texts do [5]. For-
mer works have shown that certain relations can affect pitch
assignment and placement, such as discourse structure [6],
already given or new information [7] and contrast [8].

However, linguistically enriched information like fo-
cus prominence and rhetorical relations is difficult to extract
from plain texts. Concept-to-Speech (CtS) systems (i.e. a
Natural Language Generation — NLG — system coupled
with a TtS system [9]) can provide linguistic information
which can be used in prosody modeling [10], [11].

The key idea of the present study is to model prosody
structuring and F0 contour generation by utilizing advanced
linguistic factors. Corpus-based techniques were adopted to
build machine learning models based on the commonly used
classification and auto-regression trees (CART) [12] and lin-
ear regression [13] algorithms. We chose to focus on a lim-
ited domain to ensure control over the enriched generated
phenomena. Thus, speech data were collected from a mu-
seum guide tour and set up appropriately to include large
amounts of emphatic events that can lead to focus promi-
nence determination. These reflect the presence of features
like “new or already given information” to the listener or
how many times a subject was mentioned before.

In order to study the effects of the introduction of lin-
guistic meta-information in documents, we compare the
prosodic structure models (breaks, tones and boundaries)
built by linguistically poor information against those built
by counting enriched information to find out how well the
models classify in either case. Furthermore, we have evalu-
ated the performance of the actual perceptual tonal output of
the system, i.e. the F0 curve, by comparing the F0 contour
generation models in cases of plain and enriched environ-
ments.

Due to the lack of an appropriately sophisticated lin-
guistic analyzer to extract the required features, we have
used an NLG system that can generate texts annotated with
high-level error-free linguistic factors in contrast to plain
texts [14]. As NLG systems deal with written text and fail
to represent spoken language, we have extended an XML
markup scheme (SOLE-ML [15]) to provide more evidence
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Fig. 1 Noun-phrase focus prominence elements.

of stress and intonational focus information in documents.
This enriched output is then used as an input to the TtS syn-
thesizer [16].

The last important task was to accommodate and eval-
uate error propagation throughout the modules in the afore-
mentioned TtS chain and see how this can be minimized
by the use of highly accurate predictors. While other
works evaluate the F0 predictors using human-labeled (or
manually-corrected) data, e.g. original ToBI marks, we have
also looked into the effects caused in F0 contour by the er-
rors of the ToBI predictors since breaks, accents and end-
tones are included in the feature set of the F0 target models.

2. The Enriched Linguistic Environment

One of the many factors that affect speech prosody is in-
tonational focus prominence. This is a property that is
well hidden in language and manifests itself in utterances.
Strong leads towards identification of the intonational fo-
cus (phonological stress) points in each phrase can be re-
vealed by analyzing the linguistic information [17]. Intona-
tional focus points are prosodic instances where (mainly) the
pitch is used to denote the center of meaning for a phrase.
However the above information, although valuable, is not
enough for all occasions. Part-of-speech and phrase type
information alone cannot always infer certain intonational
focus points since those are not only affected by syntax but
also by semantics and pragmatic factors [18]. So, even for
the limited number of sentence structures generated for this
domain several more useful features exist inside the lan-
guage generation stages that can be of value to the speech
synthesis.

Synthetic prosody is affected by specific linguistic in-
formation factors, alone or in combination, such as syntax,
rhetorical relations, discourse structure, contrast, already
given or new information, and more. These properties re-
quire sophisticated linguistic analysis during TtS synthesis
in order to be extracted. This information is not straight-
forwardly present in plain texts since the written form is
stripped from it. However, NLG systems can generate it
and provide it to the TtS in the form of annotated text.

In this work, useful information in the form of specific
properties for lexical items is utilized to aid intonational fo-
cus (Fig. 1).

By examining the above properties the chances of hav-

ing intonational focus in a syllable within a particular phrase
is computed. Focus prominence is assigned to lexical items
that are parts of Noun Phrases (NPs) in varying degrees as
shown below:

Strong focus prominence:
newness=new AND validation=passed

Normal focus prominence:
newness=old AND validation=passed

Weak focus prominence:
newness=new AND validation=failed

No focus prominence:
newness=old AND validation=failed

In our case, an implementation of the ILEX [19] NLG was
used. The SOLE markup output of the NLG provides
enumerated word lists and syntactic tree structures to the
TtS (DEMOSTHeNES) [16]. As shown in Fig. 2, on the
syntactic tree, error-free information exists at the phrase
level about the phrase type (sentence, noun phrase, prepo-
sitional phrase, relative clause, etc.) as well as at word level
about the part-of-speech (determiner, noun, verb, preposi-
tion, etc.). The annotated text of the chosen domain (mu-
seum exhibits [20]) contains sentences of a fairly straight-
forward Subject-Verb-Object (SVO) structure. However,
enough variation is provided in the domain for the range
of phrase types and lexical categories mentioned above to
occur in sentences.

The “shallow” syntactic representation of the natu-
ral language generator provides annotation of phrase-level
word groupings of a two-level depth (Fig. 3). Noun phrase
and prepositional phrase (PP) exist under the top level “sen-
tence” grouping. Also NPs can be children of other NPs or
PPs. The rather restricted form of generated text does not
allow for too many phrases within the sentence, thus only
one level of children phrases can exist under any top-level
phrase on the syntactic tree. This ensures that the syntax
information used to generate prosody is not too broad. The
resulting corpus is well-balanced, that is with adequate yet
not too complicated syntactic description making it an ideal
basis to achieve successful results in building prosody.

The lexical item description includes the following cat-
egories: determiner (DT), common noun (N), proper noun
(PN), verb (V), preposition (IN), adverb (ADV), adjective
(ADJ), personal pronoun (PRP), indicative pronoun (IP),
conjunction (CC), and cardinal (CD). Again, the domain de-
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Fig. 2 A SOLE-ML example.

Fig. 3 Generated syntactic representation example.

scription ensures that items of all categories exist in abun-
dance.

The particular generator can produce such detailed
meta-information. Since the SOLE-ML specification was
not speech aware, it was extended in order to accommodate
those elements that were used towards identification {ID}
and validation {VAL} of intonational focus. These proper-
ties are attached to NPs:

{ID} New or already given information:
newness [new/old]

{VAL}Whether NP is second argument to the verb:
arg2 [true/false]

{VAL}Whether there is deixis:
genitive-deixis, accusative-deixis [true/false]

{VAL}Whether there is a proper noun in the noun phrase:
proper-group [true/false]

3. The Speech Corpus Setup

The corpus data were taken from the description of museum
exhibits in the Greek language. It consists of 482 utter-
ances (5484 words and 13467 syllables). Since the NLG
component was not able to provide the complete corpus
with annotations (40.87% of the sentences were delivered
as plain text – “canned”), in order to facilitate our experi-
ments, we formulated two subsets from the corpus data: (a)
the ENRICHED set (285 utts., 2533 wrds and 6284 syls.)
and (b) the CANNED set (197 utts., 2951 wrds and 7183
syls.). The utterances in the CANNED subset are deliv-
ered in a plain form. In the ENRICHED subset case, they
are accommodated with the enriched meta-information. A
single exhibit description could contain both CANNED and
ENRICHED ones. At a first sight, we can see how different
the ENRICHED and the CANNED sets are: 8.9 wrds/utts in
ENRICHED vs. 15 wrds/utts. This is justified by the con-
straints introduced by the NLG component.

The utterances were built based on the Heterogeneous
Relation Graph (HRG) [21] model and so all feature names
used hereafter conform to this. Texts were exported in a
properly visualized and readable RTF format (Fig. 4). A
professional speaker captured the spoken expressions of a
museum guided tour, and, by following the annotation direc-
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Fig. 4 RTF format document sample. (This exhibit is a kouros, created during the archaic period. It dates
from circa 530 B.C. Currently this kouros is in the National Archaeological Museum of Athens.)

Table 1 Occurrences of break indices.

Table 2 Accent groups (pitch accents).

tions, rendered the different levels of focus according to the
properties attached to lexical items provided by the NLG.
The produced speech corpus was further automatically seg-
mented and hand annotated using the GR-ToBI marks [22]
providing description of the tonal events.

3.1 Original Prosodic Structure Characteristics

As the frequency of some ToBI marks is low in the cor-
pus, we grouped them, while they can be useful when more
data is available. Break indices mark boundaries (0 to 3)
that are represented by a subjective notion of disjunction
between words (Table 1). Additional tonal events usually
marked on the Break Index tier using special ToBI diacritics
— Sandhi (s), mismatch (m), pause (p), and uncertainty (?)
— were not accounted for since their occurrence was sparse
(< 0.1%) and thus usefulness was negligible in this work.

Pitch accents are represented by 5 binary features (Ta-
ble 2) and endtones (ToBI phrase accents and boundary
tones grouped together since GR-ToBI does not allow them
to co-occur) by 4 features (Table 3).

Table 3 Endtone groups (phrase accents, boundary tones).

Table 4 F0 mean and standard deviation of the original speech, in the
cases of CANNED spoken utterances and ENRICHED ones.

3.2 Original F0 Contour Characteristics

We have chosen to model F0 targets by following a com-
monly used strategy [13] in order to produce results com-
parable to other works: for each syllable we model the tar-
get at the start point of the syllable (start), at the middle of
the vowel (mid-v) and at the end of the syllable (end). Ta-
ble 4 shows the mean values and the standard deviations of
the corresponding F0 targets produced by the professional
reader in the parts of the CANNED and the ENRICHED
utterances. The high standard deviation shown in Table 4
(> 30 Hz in the ENRICHED case) reflects the variability of
the pitch targets in the original speech due to the presence
of rich emphatic events. The pitch accent lies somewhere
inside the vowel. However, the 3-point approach followed
here, as well as in other F0 modeling studies, models the
center point of the vowel in a syllable. In this work, we
have not looked into the effects caused by accent alignment
accuracy.
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4. Building the Models

The features selected for the training were most of the com-
monest in the literature [13], [23], applied in a 5-instance
window in cases of categorical features and in a 3-instance
window in cases of continuous features. The following will
be referred hereafter as the “common” feature set:

• stress: indicates whether a syllable carries a lexical
stress or not. Values: 0, 1.
• syl in, syl out: the number of syllables since and until

major breaks. Values: integer.
• word in, word out: the number of words since and un-

til major breaks. Values: integer.
• ssyl in, ssyl out: the number of stressed syllables since

and until major breaks. Values: integer.
• last ssyl: indicates whether a syllable is the last

stressed in a phrase. Values: 0, 1.
• last asyl: indicates whether a syllable is the last ac-

cented in a phrase. Values: 0, 1.
• syl position: the syllable position in a word. Values:

initial, mid, final and single.
• onset size: the number of the phonemes before the

vowel in a syllable [24]. Values: integer.
• coda size: the number of the phonemes after the vowel

in a syllable [24]. Values: integer.
• stress structure: indicates in which syllable of the word

the lexical stress is. The values for the Greek language
are: final, penultimate, antepenultimate and none.
• gpos: the part-of-speech of the word. Values: verb,

noun, proper noun, indicative pronoun, preposition, de-
terminer, personal pronoun, adverb, adjective, conjunc-
tion, pronoun, cardinal.
• punctuation: based on the punctuation marks, this

feature indicates minor punctuation breaks (commas),
major ones (full stops, exclamation marks, question
marks) or none.

Additionally (for the ENRICHED subset), we have intro-
duced the following “enriched” feature set:

• phrase boundaries: explicitly marked start and end syl-
lables of phrases and sentences. Values: pstart, sstart,
pend, send and none.
• phrase type: the type of the corresponding phrase. Val-

ues: sentence, noun phrase, and prepositional phrase.
• syntax tree depth level: phrases and/or lexical items

contained by other phrases are explicitly marked so
(see Fig. 3). Values: integer.
• focus: The intonational focus feature that is computed

from the “newness”, “arg2”, “deixis” and “proper
noun” tags (see Fig. 1). Values: strong, normal, weak
and none.

Tables 1, 2 and 3 in Sect. 3 presented the occurrences of
breaks, pitch accents and endtones. Breaks always occur
at the end of a word and all words have a break. On the
other hand, it is not clear where pitch accents occur in words

Table 5 Accent and unaccented syllables.

Table 6 Tonal-boundary and non-tonal-boundary words.

Table 7 The several configurations used to evaluate the performance of
the models.

and also not all words get an accent. Thus, since the learn-
ing set of the accent models consists of syllable instances,
the model should also take into account the UNACCENTED
class and predict whether a syllable deserves an accent and,
if so, which one. Table 5 presents the occurrences of ac-
cented and unaccented syllables in the corpus.

Similarly, endtones always occur at the end of a word,
defining a tonal boundary. However, not all words have end-
tones. Thus, the class NONE should be also included in the
possible values of the endtone prediction. Table 6 presents
the occurrences of tonal-boundary and non-tonal-boundary
words in both subsets.

In order to inspect on performance enhancements
caused by the introduction of the enriched data, we created
three (3) different configurations (Table 7). C1 consists of
utterances from the CANNED subset. The prosodic structure
and F0 models in this case were built by utilizing the com-
mon feature set (Sect. 4). Configuration C2 uses the same
feature set, but the utterances come from the ENRICHED
subset. This way we inspect how the restricted grammar in-
troduced in the ENRICHED case affects the models, though
both subsets originate from the same domain. Finally, the
last configuration exploits the additional enriched features
upon data from the ENRICHED subset. This is to evalu-
ate the effect of the introduction of the enriched linguistic
meta-information.

5. Evaluation

The evaluation is divided in two parts: the first one deals
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with the performance of the prosodic structure predictors
(ToBI marks), while the second part copes with the gener-
ated F0 contours.

5.1 Prediction of ToBI Marks

For the prediction of the ToBI marks we used the wagon
CART building program [25] to build classification trees.
Wagon uses a greedy algorithm that incrementally finds the
best single feature to improve the prediction. For each of
the above configurations (Table 7) we built 3 models: break,
accent and endtone. Our validation approach is based on the
10-fold cross validation method.

5.1.1 N-Fold Cross Validation

Cross validation is a computationally demanding method
for validating a procedure for model building, which avoids
the requirement for a new or independent validation dataset.
In N-fold cross validation, the learning dataset is randomly
split into N sections, stratified by the outcome variable of
interest. This ensures that a similar distribution of outcomes
is present in each of the N subsets of data. One of these
subsets of data is reserved for use as an independent test
dataset, while the other N − 1 subsets are combined for use
as learning datasets in the model-building procedure. The
entire model-building procedure is repeated N times, with a
different subset of the data reserved for use as the test dataset
each time. Cross validation is based on the fact that the aver-
age performance of these N models is an excellent estimate
of the performance of the original model (produced using
the entire learning dataset) on a future independent set of
measurements.

5.1.2 Evaluation Metrics

The performance was estimated by using the precision and
recall metrics per break, pitch accent and endtone class, as
they have been explained in Sect. 3.

Per class precision (Pclass) is defined as the number of
correctly identified instances of a class (tp), divided by the
number of correctly identified instances, plus the number of
wrongly selected cases ( f p) for that class:

Pclass =
tp

tp + f p
(1)

Per class recall (Rclass) is estimated as the number of
correctly identified instances of a class (tp), divided by the
number of correctly identified instances plus the number of
cases the system failed to classify for that class ( f n):

Rclass =
tp

tp + f n
(2)

5.1.3 Results

Tables 8, 9 and 10 present the results for the break, the ac-
cent and the endtone model respectively for the three config-
urations C1, C2 and C3. In general, there is an improvement

Table 8 Results from the 10-fold cross validation of the prosodic phrase
break models. (Conf. = configuration, Corr. = correctly classified in-
stances, CXp = CX precision, CXr = CX recall).

Table 9 Results from the 10-fold cross validation of the accent models.
(Conf. = configuration, Corr. = correctly classified instances, CXp = CX
precision, CXr = CX recall, UN = unaccented).

Table 10 Results from the 10-fold cross validation of the endtone mod-
els. (Conf. = configuration, Corr. = correctly classified instances, CXp =
CX precision, CXr = CX recall, N = NONE).

on the performance of the models in C2 case (compared to
C1). This is mainly caused by (a) the restricted grammar
used in the ENRICHED utterances and (b) the shorter av-
erage length of the ENRICHED utterances compared to the
CANNED ones as explained in Sect. 3.

Though the accuracy of accent prediction was in-
creased in configuration C2, the performance of the ac-
cented classes (i.e. all classes apart from UNACCENTED)
was slightly improved. This was due to the fact that the
CART models produce more accurate results in cases where
enough data are provided. The above model was trained
on syllable instances and the unaccented syllables in the
ENRICHED utterances constitute the 72.2% of the total syl-
lables (Table 5). Consequently, there is an improvement in
the CART tree on predicting the UNACCENTED class and
that greatly raises the total accuracy of the model. This how-
ever does not affect the accuracy of the accented classes,
as shown by their recall and precision metrics. Concern-
ing configuration C3, we did not expect high scores from
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the CART in the cases of L* (6.12% — Table 2) and H*
(12.48%) as there are less instances of them related to the
other classes. However, the introduction of the enriched fea-
tures provides better prediction of accents.

Concerning the endtone prediction, the CART frame-
work did not achieve good results in the cases of low-
frequency occurrences, as expected. In configuration C1,
L-H% constitutes the 0.2%, H-H% also the 0.2% and L- the
1.3% (see Tables 3 and 6). In the remaining two configu-
rations, distributions are even lower: L-H% is 0.04%, H-
H% is 0.08% and L- is 0.6%. However, the introduction of
the enriched feature set provided a good input to the model
in the L- case. Other machine learning approaches (e.g.
Bayesian Networks) show improved classification for low-
frequency ToBI classes but a worse one for high-frequency
cases [26]. However, such optimization was out of the scope
of this study.

5.2 F0 Model

To build the F0 model we chose the commonly adopted
Linear Regression [13] method (F0-LR). The training was
carried out by the ols (Linear Regression by ordinary least
squares) [25] program. Following the F0 framework de-
scribed in Sect. 3.2, three models are built to predict the F0
targets in the start, mid (vowel) and end point of a sylla-
ble. In all cases, the validation of the models was performed
by holding out a balanced 10% of the learning data set that
formed the test set.

5.2.1 Objective Evaluation

The evaluation process was focused on the accuracy of the
pitch target prediction and the F0 contour on top of the syn-
thetic utterances. For the objective evaluation of the models’
results we computed the root mean square error (RMSE) and
the correlation coefficient (r), which have been commonly
used in other works. In order to inspect on performance en-
hancements caused by the introduction of the enriched data,
we created two groups of experimental setups in order to
look into the effects caused in F0 by (a) different kinds of
input and (b) models’ error propagation in the TtS chain.
All the configurations of Table 7 are contributing in these
two groups.

In the first group, we evaluate the F0 models against the
original supplied ToBI values (i.e. from the hand-labeled an-
notations). These cases do not encapsulate any TtS-related
effects, so no ToBI prediction is taking place. In the other
group, we use the predicted ToBI marks from the TtS chain
to evaluate the actual synthetic F0 contour.

Table 11 actually presents the optimum target RMSE
and correlation. Looking at the columns of the configura-
tions C1 and C2, it is clear that we achieve slightly better
performance in cases of syntactically restricted input text,
as in the case of C2. Also, the shorter average length in
the ENRICHED utterances seems to provide better classifi-
cation in the models. By introducing the enriched features

Table 11 Performance of the F0-LR models in the C1, C2 and C3 con-
figurations using the original ToBI marks. (s = start, m = mid v and e =
end).

Table 12 Performance of the F0-LR models in the C1, C2 and C3 con-
figurations using the predicted ToBI marks. (s = start, m = mid v and e =
end).

(C3) along with input data identical to C2, we get an actual
improvement of ∼9.5% in the correlation of the predicted F0
curves against the original ones.

Table 12 tabulates the performance of the F0 models
through the TtS chain. In these setups the ToBI marks are
predicted using the CART models presented before. The
high values in RMSE are explained by the also high stan-
dard deviation of the original F0. Interesting points can be
deduced from this table. First of all, the accuracy of the
ToBI accent models presented in Table 9 is not depicted
in the correlation of F0 in the cases of C1 and C2, where
we have a mean decrease of 17.6% and 13.0% respectively
compared to Table 11, while in the C3 case the mean de-
crease is just 5.7%. This confirms the fact that the low per-
formance of the accented classes of the CART based ToBI
predictors is hidden by their apparently high accuracy. Fur-
thermore, the introduction of the enriched feature set has
increased the correlation in the F0 targets by 19.6%.

Figure 5 illustrates an example utterance, both original
and synthetic (using predicted ToBI values): in the enriched
input (configuration C3) the curve goes up and down almost
synchronized with the original curve. In the plain input case
(configuration C2), some events have been missed due to
errors in ToBI pitch accent and break indices in previous
modules that have propagated to the F0 model.

5.2.2 Subjective Evaluation

Further to the objective evaluation of the models, the nature
of the domain (enriched and canned text) and the involve-
ment of properties such as “newness” that are employed in
a description that spans more than a single sentence require
an additional subjective evaluation that can add a more qual-
itative aspect to the results presented above pictures the per-
ceptual effects of the linguistically enriched information to
the listeners.

A group of 10 trained and untrained listeners were
asked to take part in an intonation evaluation assessment.
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Fig. 5 The F0 contour of the original (top), enriched input — C3 (mid-
dle) and plain input — C2 (bottom).

Fig. 6 Scoring distribution for plain input text (C2 — left) and enriched
input text (C3 — right).

For the total of 8 sentences, listeners were asked to listen to
2 pairs of synthesized speech for each of the sentences. The
first pair consisted of a carrier of the original pitch curve
against the speech output from the enriched text input (Ta-
ble 12, configuration C3). The second pair consisted of the
original pitch as before and the speech output from the plain
text input (Table 12, configuration C2). The listeners were
asked to evaluate the similarity in intonational focus, tone
and break (prosody prediction successfulness) for the two
models against the original, in a scale from 5 (identical) to 1
(totally different). The results (Fig. 6) show that the enriched
text sentences had a 44% scoring of 4 (29% of 5, 25% of 3)

while the plain text sentences had a 44% scoring of 3 (27%
of 2, 20% of 4). A general listener opinion was that the
breaks between the words in plain text model suffered the
most (which reflects the low score of the break index model
in the CANNED case — Table 8), however failing to predict
successful breaks leads inevitably to misplacement and/or
wrong tone assignment.

6. Conclusions

Our aim was to study the effects of several linguistic fea-
tures in prosody generation. Using a CtS system, we uti-
lized a linguistically annotated corpus. The provided prop-
erly structured linguistic meta-information has been used to
improve the prediction of tones, breaks and pitch targets.
An extended SOLE-ML specification has been formulated
to accommodate the required factors that can imply focus
prominence. The improvement in the delivery of prosody in
cases where linguistically enriched information was avail-
able was shown by the CART prosodic structure models.
We then compared the performance of the linear regression
F0 model in cases of enriched XML input against plain text
input using the original ToBI marks, as well as the predicted
ones, like in real applications, to evaluate the performance of
the whole prosody generation component, accommodating
error-propagation from module to module. We concluded
that the generated F0 curve correlates 19.5% better upon the
introduction of the enriched input.
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