
Proc. Of EUROSPEECH 2001, Sept. 3-7, Aalborg, Denmark, pp. 2247-2250

Text-to-Speech Scripting Interface for Appropriate
Vocalisation of e-Texts

Gerasimos Xydas and Georgios Kouroupetroglou

University of Athens, Department of Informatics and Telecommunications,
Division of Communication and Signal Processing

{gxydas, koupe}@di.uoa.gr

Abstract

Electronic texts carry important meta-information (such as
tags in HTML) that most of the current Text -to-Speech (TtS)
systems ignore during the production of the speech. We
propose an approach to exploit this meta-information in order
to achieve a detailed auditory representation of an e-text. The
e-Text to Speech and Audio (e-TSA) Composer has been
designed and developed as an XML based scripting
framework that can be adopted by existing TtS, with minor or
major modifications. It provides a mechanism to create scripts
using combined elements from e-texts and TtS systems. The
e-TSA Composer can manipulate the behaviour of a TtS (e.g.
the applied prosody) in order to define a finest vocalisation in
response to specific e-texts.

1. Introduction

Spoken information provision in emerging environments, like
in auditory-only interfaces, virtual reality and e-commerce
raise new issues for text -to-speech (TtS) systems. Apart from
ordinary plain text, novel elements, most of them appear in a
repeatable way, are set for vocalisation. For example, an
HTML page has <paragraph>s and <table>s under
<body>. An MS-Word document has sections where
different styles are defined. These are elements that support
the visualisation of the documents and in most cases carry
important meta-information about the text (e.g. bold letters
usually imply emphasis). The introduction of eXtended
Markup Language (XML) [1], as well as other mark-up
languages, makes this meta-information even more perceivable.
How this meta-information can be audibly embedded in the
vocalisation of the text information comprises an important
research issue.

Furthermore, several works have dealt with the
importance of mixed speech and non-speech signals to
support the presentation of structures, such as tables, lists,
etc. This becomes more essential in cases of auditory-only
interface [2]. Other works (e.g. [3]) propose the insertion of
non-speech audio signals, such as beeps, while other focus on
the prosodic variations and speaker-style changes [4].

In order to efficiently interpret e-texts in a vocalised
manner, there should be a TtS mechanism that would allow
declarations like: For every <title> you come across in an
HTML document, insert a beep and read it out loudly and in a
staccato way. This differs from the scope of VoiceXML [5]
and other speech-aware mark-up languages (e.g. [6]) in that
VoiceXML: (a) has its own format, (b) presents an
abstraction of a part of the functionality of a TtS and (c) it is
already speech-aware. However, the majority of the existing e-
texts lack speech awareness.

Most of the TtS systems don’t incorporate a facility to
associate specific meta-information of the source document
with customised speech and audio behaviour for enabling a
detailed auditory representation of an e-text. They mainly deal
with properly syntactical structured texts and there is not
provision for handling other kinds of meta-information. In this
work, we make an effort to accommodate that through the e-
TSA Composer .

As we need a way to refer to the parts that constitute a
formatted document (like the elements on XML), we
introduce the notion of cluster. A cluster is a representative of
a part of an e-text. In this paper essentially we target to a
scheme where TtS related properties and source’s e-text
clusters could be combined on a recursive base. This will
enable the description of the auditory behaviour of the TtS on
response to specific clusters.

The general requirements to achieve that goal in TtS
systems should be:

1. Identification and handling of clusters in the source e-

text and in a way that can be further combined with
TtS system’s properties.

2. Declaration of TtS system’s properties in an
appropriate way.

3. Combination of the above descriptions into an
instruction set that can control TtS system’s
operation.

4. Interpretation the above instruction set.

Proc. Of EUROSPEECH 2001, Sept. 3-7, Aalborg, Denmark, pp. 2247-2250

In the next paragraph we briefly present the e-Text to
Speech and Audio (e-TSA) Composer. Then, we propose the
format of the scripts and how a TtS can adopt this approach.
In section 4 we discuss the flexibility as well as the
perspective of our work.

2. The e-TSA Composer

To fulfil the basic requirements described above, we have
designed the e-Text to Speech and Audio (e-TSA) Composer
framework (Figure 1). Its mainly feature is to allow clusters’
and TtS’ properties to be mixed under a single scripting
language. Actually, we do not propose a new scripting
language, but we gain from the power of XSLT [7] to
transform XML documents. Thus, the e-TSA Composer is
mainly based on XML, which furthermore is widely used on
cross-platform applications and also there are many related
authoring tools freely available.

The e-TSA Composer assumes an underlying generic TtS
and can be seen as an extension or an add-on to it. This
approach targets to a cross-TtS use.

Figure 1 presents the architecture and the flow of
information in the e-TSA Composer. The parts that are
closely coupled with the underlying TtS have been marked
with black colour. Three major steps are identified:

1. The translation of e-texts to an appropriate composer-

XML format (cXML). Specialised modules handle
specific e-text formats (e.g. HTML to cXML, MS-Word
to cXML).

2. The transformation of the cXML document to a set
of instructions for the underlying TtS, in the form of a
composer-interface XML (ciXML). We will present
this in detail later.

3. The interpretation of the ciXML document. This
depends heavily on the underlying TtS, as it should
provide means to handle such documents, and this is
one of the modifications that need to be done in the
TtS. The second one is to properly export its
properties.

2.1. Exporting the TtS properties

TtS properties consist of parameters that customize its
functionality (e.g. the ratio that is applied to the duration of a
syllable at the end of a phrase). We further assume that the

functionality of a TtS is controlled by a set of modules. This
is usually the case in most modern TtS systems (eg. [8] and
[9]).

We have adopted the Document Type Definition (DTD)
format, which suits perfectly to the XML scheme of the
Composer in order to have a uniform definition of the TtS
properties. Each module should provide a DTD defining a
unique namespace and a set of parameters accommodated with
valid values that customize it. The namespace act as the
identification of the module in order to be referred during
scripting.

Figure 2 shows the way that properties are being exported
to a DTD format. The algorithm is as follow:

For each parameter Pxi of type Tx with a
range of valid values Vx1, Vx2,…, VxN
define:

 <!ELEMENT Pxi (…)>
 <!ATTLIST Pxi (Vx1|Vx2|…|VxN)>

The first three dots (…) refer to specific implementation
issues (can be EMPTY, #PCDATA, …), which is out of the
scope of this paper.

TtS Module

Ti Pik = Vim

Tq Pqj = Vqn

functionality

Declarations:

TtS Module DTD
<!ELEMENT Pik>
<!ELEMENT Pqj>
<!ATTLIST Pik

(Vi1| Vi2|…| Vim)>
<!ATTLIST Pqj

(Vq1| Vq2|…| Vqn)>

TtS Module

Ti Pik = Vim

Tq Pqj = Vqn

functionalityfunctionality

Declarations:

TtS Module DTD
<!ELEMENT Pik>
<!ELEMENT Pqj>
<!ATTLIST Pik

(Vi1| Vi2|…| Vim)>
<!ATTLIST Pqj

(Vq1| Vq2|…| Vqn)>

Figure 2: The export of module's parameters to a DTD
document. On the left, parameter Pik is of type Ti and

E-text cXML ciXML

Speech
&

Audio

E-text
Adapter

Transformer Composer

Word

HTML

SQL

VXML

Modules
properties

Speech-relatedText-related

Clusters Auditory
Definition

E-text to cXML cXML to ciXML ciXML to S&A

Audio-related

Figure 1: The architecture of the e-TSA Composer. Black cycles refer to the modules of the underlying TtS.

Proc. Of EUROSPEECH 2001, Sept. 3-7, Aalborg, Denmark, pp. 2247-2250

has been assigned the value Vim. On the DTD,
parameter Pik can been assigned a value among the

valid Vi1, Vi2,…Vim.

For example, assume a RHYTHM module capable of (a)
applying several tempo patterns and (b) modify the duration
of syllables based on their position in a phrase. This module
can be represented by the following DTD:

<!ELEMENT Rhythm (Tempo*, Syllable*)>
<!ELEMENT Tempo (#PCDATA?)>
<!ATTLIST Tempo speed
(lento|andante|allegro)>
<!ATTLIST Tempo acc_var (legato|staccato)>
<!ELEMENT Syllable (#PCDATA?)>
<!ATTLIST Syllable place (begin|end)>
<!ATTLIST Syllable ratio (#PCDATA)>

The above does not imply that both elements should be
used at the same time. Instead, one can use what suits better
her/his case.

Figure 3 presents the cycle of customisation of a TtS
module’s properties. The role of the “Transformer” and the
“Composer” will be presented in detail in next section.

Figure 3: The cycle of modules' customisation.

3. Cluster Auditory Definition (CAD)

The cXML document produced during step 1 in Fig. 1
includes elements (like <book>, <title> and <chapter>)
either just one or many times. These elements represent the
clusters of the source e-text. In order to associate a customised
auditory behaviour to the clusters, we introduce the notion of
the Cluster Auditory Definition (CAD), which refers to the
speech and audio behaviour of the TtS for the specific cluster.
A CAD consists of:

1. A pointer to a cluster of the source e-text and

2. A script that describes the speech and audio
behaviour of the TtS.

The CAD actually forms a link between the cluster and a

detailed programmed behaviour of the TtS when dealing with
that cluster.

The mechanism for making this association is based on
transforming the cXML document. This transformation takes
into account the modules’ DTDs and has recursive properties.

3.1. CAD scripts

A script in a CAD must be able to make use of any service
and data available in the TtS. Thus, the TtS should have
properly exported its features in corresponding DTDs.

Assume that we have an HTML document that among
other things contain the lines:

<h1>A new therapy on the way</h1>
<p>blah blah

Click here</p>

The “Text Adapter” of Figure 1 can transform this to a
cXML document:

<headline>A new therapy on the
way</headline>
<details>blah blah
<link href=”http://news.com/article1”>
Click here</link></details>

This cXML document defines three clusters (we refer to
them using their XPath in the cXML):

a. /headline
b. /details
c. /details/link

One can now describe the auditory features of her/his
preference for each cluster by writing a CAD script to
vocalise it. For example:

1. /headline: apply a “staccato” rhythm pattern
2. /details: apply normal prosody
3. /details/link: insert a beep at the beginning,

read it out loudly and expand syllables by 1.2 times at
the end of a phrase or by 1.4 times at the beginning.

To create a CAD script, we use transformation rules in

XSLT template formats. So, the template for the case of the
CAD number 3 above (/details/link) would be as
follows:

<template match=”/details/link”>
 <SOUND:Insert file=”beep.wav”/>
 <ENERGY:Loud>

TtS Module
Ti Pik = ?
Tq Pqj = ?

TtS Module
DTD

ciXML

set parameters
Pik, Pqj

Transformer

Composer

Proc. Of EUROSPEECH 2001, Sept. 3-7, Aalborg, Denmark, pp. 2247-2250

 <RHYTHM:Syllable place=”end”
ratio=”*1.2”>
 <RHYTHM:Syllable place=”begin”
ratio=”*1.4”>
 <apply-template/>
 </ENERGY:Loud>
 </RHYTHM:Syllable>
 </RHYTHM:Syllable>
</template>

This template implies that whenever a /link cluster is
offered in the source HTML document, under a /details
cluster, it will be vocalised using the behaviour described in
the template. Furthermore, this inherits to any instance of the
above cluster is found in the source HTML document.

3.2. Interface with the underlying TtS

After applying the above template, the produced document
embeds instructions for customising the functionality of the
TtS. The result is formatted in composer-interface XML
(ciXML) type and looks like the following:

<SOUND:Insert file=”beep.wav”/>
<ENERGY:Loud>
<RHYTHM:Syllable place=”end” ratio=”*1.2”>
<RHYTHM:Syllable place=”begin”
ratio=”*1.4”>
Click here.
</ENERGY:Loud>
</RHYTHM:Syllable>
</RHYTHM:Syllable>

This description is a complete instruction set for the
underlying TtS. It can be interpreted in a row to set up the
parameters that control it.

One important feature that supports the safe
interpretation of the scripts is that the TtS can ignore
everything it does not understand. This way the TtS can
perform its best that suits the script. Another note here is that
there is the option for the TtS to rename a namespace, if it is
defined otherwise locally.

4. Discussion

The e-TSA Composer embeds features of a speech mark-up
language, as it produces ciXML, a marked-up document that
includes information about the vocal representation of a text.
However, ciXML is more flexible (but on the other hand
complicated) as it allows a detailed programming of the TtS.
So, instead of simply saying “slow rate” one can further
define properties of “slow rate” (e.g. stretching the final
syllables by a factor, hot to slow down pitch transition etc),
though a TtS can provide a separate “slow rate” instruction as
well. In VoiceXML, the perception of “slow rate” is left to
the view of the TtS. Thus, the e-TSA Composer allows finest
and more predictable description of the prosodic and other
non-speech features.

In [10] XML has been used as a mean to compute and
represent the hierarchical linguistic structures of a text in a TtS
and further effort has been made on its use during speech
generation [11][12]. In contrast, e-TSA Composer mainly
deals with non-speech-aware applications and how to use
XML as a scripting language to associate elements of the
source with auditory details. Furthermore, CAD scripts can
be used to deal with speech marked-up documents or in
concept-to-speech systems.

A further advantage of our methodology is that one can
now control the TtS using XML authoring tools.

The e-TSA Composer has been implemented as a
dynamically linked module in DEMOSTHeNIS Speech
Composer [13] to enable the audible parsing of HTML
documents. Though we achieved the basic requirements, more
effort should be employed on standardising the definitions of
modules, thus allowing e-TSA to work in a cross-TtS manner.

5. Conclusions

In order to fulfil the need for exploiting the meta-information
of e-texts during their auditory representation, we presented a
scripting framework that allows the recursive association of
text’s elements and TtS speech and audio events. The e-TSA
Composer has been proposed based on XML for being
adopted by existing TtS systems.

6. Acknowledgements

The work described in this paper has been partially supported
by the M-PIRO project of the IST Programme of the
European Union under contract no IST-1999-10982.

7. References

[1] http://www.w3c.org/XML
[2] Mitsopoulos, E., A Principled Approach to the Design of

Auditory Interaction in the Non-Visual User Interface,
Submitted for the degree of Doctor of Philosophy,
University of York, UK, 2000

[3] Hakulinen, J., Turunen, M. and Raiha, K., The Use of
Prosodic Features to Help Users Extract Information

Proc. Of EUROSPEECH 2001, Sept. 3-7, Aalborg, Denmark, pp. 2247-2250

from Structured Elements in Spoken Dialogue Systems, In
Proceedings of ESCA Tutorial and Research Workshop
on Dialogue and Prosody, Eindhoven, The Netherlands,
pp.65-70, 1999

[4] Shriver, S., Black, A. and Rosenfeld, R., Audio Signals in
Speech Interfaces, In Proceedings of International
Conference on Spoken Language Processing (ICLSP-
2000), Beijing, China, 2000

[5] Voice eXtensible Markup Language (VoiceXML™) version
1.0, W3C Note 05 May 2000,
http://www.w3.org/TR/voicexml/

[6] Sproat, R., Taylor, P., Tanenblatt, M. and Isard, A., A
markup language for text-to-speech synthesis, In
Proceedings of Eurospeech97, Rhodes, Greece, pp. 1747-
1750, 1997

[7] XSL Transformations (XSLT) Version 1.0, W3C
Recommendation 16 November 1999,
http://www.w3.org/TR/xslt

[8] Taylor, P., Black, A. and Caley, R., The architecture of
the Festival Speech Synthesis System, 3rd ESCA
Workshop on Speech Synthesis, Jenolan Caves, Australia
pp. 147-151, 1998

[9] Dutoit, T., Bagein, M., Malfrere, F., Pagel, V., Ruelle, A.,
Tounsi, N. and Wynsberghe, D., EULER : an Open,
Generic, Multi-lingual and Multi-Platform Text-To-Speech
System, In Proceedings of LREC'00, Athens, Greece, pp.
563-566, 2000.

[10] Huckvale, M., Presentation and Processing of Linguistic
Structures for an All-Prosodic Synthesis System Using
XML, In Proceedings of Eurospeech99, Budapest,
Hungary, pp 1847-1850, 1999

[11] Huckvale, M., The Use and Potential of Extensible Mark-
up (XML) in Speech Generation, Working paper,
COST258 Naturalness of Synthetic Speech, (to appear),
2001

[12] Hitzeman, J., Black, A., Mellish, C., Oberlander, J.,
Poesio, M. and Taylor, P., An annotation scheme for
concept-to-speech synthesis, In Proceedings of European
Workshop on Natural Language Generation, Toulouse,
France, pp. 59-66, 1999

[13] Xydas, G. and Kouroupetroglou, G., DEMOSTHeNIS
Composer , Technical Report, University of Athens,
Department of Informatics and Telecommunications,
Greece, 2001

