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Abstract. Traditionally, musical instrument recognition is mainly based on fre-
quency domain analysis (sinusoidal analysis, cepstral coefficients) and shape 
analysis to extract a set of various features. Instruments are usually classified 
using k-NN classifiers, HMM, Kohonen SOM and Neural Networks. In this 
work, we describe a system for the recognition of musical instruments from iso-
lated notes. We are introducing the use of a Time Encoded Signal Processing 
method to produce simple matrices from complex sound waveforms, for in-
strument note encoding and recognition. These matrices are presented to a Fast 
Artificial Neural Network (FANN) to perform instrument recognition with 
promising results in organ classification and reduced computational cost. The 
evaluation material consists of 470 tones from 19 musical instruments synthe-
sized with 5 wide used synthesizers (Microsoft Synth, Creative SB Live! Synth, 
Yamaha VL-70m Tone Generator, Edirol Soft-Synth, Kontakt Player) and  
84 isolated notes from 20 western orchestral instruments (Iowa University  
Database). 

1   Introduction 

Automatic music instrument recognition is an essential subtask in many applications 
regarding music information indexing and retrieval. Computational auditory scene 
analysis (CASA), automatic music transcription frameworks and content-based search 
systems, all find such a capability to be extremely helpful. However, musical instru-
ment recognition has not received as much research interest as, for instance, speech 
and speaker recognition, even though both the amateur music lover and the profes-
sional musician would benefit from such systems. 

Many attempts in music instrument recognition have taken place in the last thirty 
years. Most of them have focused on single, isolated notes (either synthesized or natural) 
and tones taken from professional sound data-bases [1]. Recent works have operated on 
real-world recordings, polyphonic or monophonic, multi-instrumental or solo [2]. How-
ever, the issue is yet far from being solved. The work on recognition from separate notes 
still remains crucial, since it can lead to further optimization of the methods used and to 
insights on the recognition of multi-instrumental, commercial recordings. 
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The majority of the recognition systems used so far concentrate on the timbral-
spectral characteristics of the notes. Discrimination is based on features such as pitch, 
spectral centroid, energy ratios, spectral envelopes and mel frequency cepstral coeffi-
cients [3,4]. Temporal features, other than attack, duration and tremolo, are seldom 
taken into account. Classification is done using k-NN classifiers, HMM, Kohonen 
SOM and Neural Networks [5,6]. A limitation of such methods is that in real instru-
ments the spectral features of the sound are never constant. Even when the same note 
is being played, the spectral components change. One has to take into consideration 
many timbral components and the way they can vary, which is often rather random, in 
order to develop a robust recognition system.  

In this paper, we present a different instrument recognition approach, based on 
Time Encoded Signal Processing and Recognition, a time-domain specific feature ex-
traction process. The method encodes signals in a simple and computational light-
weight manner, while producing fixed size and dimension structures regardless of the 
duration or complexity of the signal. Classification is performed using Fast Artificial 
Neural Networks. For validation, we use isolated, constant-pitch notes. 470 notes pro-
duced with 5 velocity scales from 19 instruments, using 5 synthesizers. 28 notes were 
taken from a public real-instrument database of 20 instruments. 

The paper is organized as follows: in Section 2, we describe the recognition and 
classification methodology used. Section 3 contains the validation procedure and the 
recognition results. Section 4 concludes this work. 

2   Recognition and Classification Method 

2.1   Time Encoded Signal Processing  

Time Encoded Signal Processing and Recognition, or TESPAR Coding, is a method 
proposed by King [7, 8] to digitally code speech waveforms.  The method is based on 
infinite clipping (Fig. 1 shows an example), a coding method proposed by Licklidder 
and Pollack [9]. According to their work, they managed to achieve mean random-
word intelligibility scores of 97.9% by differentiating a speech waveform and then 
removing all amplitude information by performing infinite clipping i.e. preserving 
only zero-crossing information. 

The infinite clipping coding is a direct representation of the duration between the 
zero crossings of the waveform, i.e. the real zeros of the waveform, thus it is only de-
pendent on the waveform itself and not at the sampling frequency, as long as sam-
pling is performed according to Shannon’s theorem. 

The above observations on the importance of zeros to the intelligibility of a coded 
waveform led scientists to further investigate zero-based methods of signal approxi-
mation [10, 11]. Author in [11] showed that the introduction of the concept of com-
plex zeros could help overcoming some deficiencies of infinite clipping.  

Let a signal waveform of bandwidth W and duration T. The signal contains 2TW 
zeros, where typically 2TW exceeds several thousand. While the real zeros are easy to 
determine, complex zeros extraction is a difficult problem involving the factorization 
of a 2TWth - order polynomial. Such an approach of zeros identification requires sig-
nificant computational resources and is practically infeasible.  
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Fig. 1. Infinite Clipping of an oboe waveform 

Instead of determining the exact position of complex zeros, which is a complicated 
task, an approximation of their location could be given. Thus, the waveform is seg-
mented between successive real zeros - the epochs - which comprise the bounds for 
the complex zeros positions. Complex zeros become visible in the shape of the wave-
form as minima, maxima or points of inflection and occur in conjugate pairs inside 
the epoch. 

Hence, a band limited waveform may be simply approximated by segmenting it 
into successive epochs with two features: 

− Duration (D) which is the number of samples between two successive real zeros 
− Shape (S) which is the number of local minima (for a positive epoch) or the num-

ber of local maxima (for a negative epoch) 

Coding Method. The recorded music waveform is presented to the software imple-
mented TESPAR coder (in Matlab), which segments it into successive epochs. Each 
epoch is described with a set of numbers representing the Duration and Shape (D/S) 
of it. This pair is then coded according to a predefined alphabet, representing each ep-
och by a single “letter”. In order to reduce the complexity of this mapping procedure, 
only the more important D/S pairs are encoded according to an alphabet. The alphabet 
used depends on the complexity, bandwidth and sampling frequency of the input sig-
nal. Most frequency components of a speech signals are in the band of 300Hz to 3 
kHz. Authors in [8] use a standard 29 symbol alphabet to encode speech signals sam-
pled at 8 kHz. However, musical waveforms are richer in harmonics so the bandwidth 
of the signal had to be extended to 100Hz to 5.5 kHz. In order to approximate the mu-
sic waveform more adequately, the alphabet used was extended to 48 symbols by al-
lowing maximum epoch duration (D) to be 54 samples instead of 37 used in [8]. The 
aforementioned coding procedure results to a symbol stream, as shown in Figure 2, 
which can be converted into a fixed-dimension matrix. The N-dimension matrix 
(where N is the number of the symbols in the alphabet) which contains the number of 
appearances of each character in the symbol stream is called S-Matrix (Figure 3). His-
togram-like, S-Matrices are very descriptive of the waveform from which they were 
created and can be used for classification purposes. Their fixed dimensions make the 
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Fig. 2. TESPAR Coding Procedure 

 

Fig. 3. S-Matrix of figure 2 waveform 

classification task using Artificial Neural Networks (ANN) a very enticing solution 
and the combination of TESPAR with FANNs (Fast Artificial NNs) a very powerful 
tool for instrument recognition and identification. 

2.2   Fast Artificial Neural Networks 

FANN is a library which implements a multilayer feedforward ANN, that is, an ANN 
with neurons ordered in layers, starting with an input layer, continuing with one or 
more hidden layers and ending with an output layer. The most common networks are 
fully connected, with connection going only forward, from one layer to the next. The 
main advantage of this implementation is faster training and testing, compared to 
similar libraries on systems without a floating point processor, while retaining a com-
parable performance to other libraries on systems with a floating point processor.  

In order to use these networks for classification purposes, two phases must be 
completed. The first phase is the training phase, where the FANN learns from the im-
posed input and the requested output. The second phase is the execution phase, where 
the FANN is presented with unknown input and provides an output. The training 
process is actually an optimization problem, where the mean square error (MSE) of 
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the entire set of training data must be minimized. The algorithm used to solve this op-
timization problem is the Backpropagation algorithm. After propagating an input 
through the network, the error is calculated and then propagated back through the 
network. In the same time the weights are adjusted in order to make the error smaller. 
The object of training is to minimize the MSE for all the training data. Training the 
network on data sequentially one input at a time, instead of training using the whole 
dataset at once has been proved more efficient. While this means that the order of the 
data is of importance, this method is a way of avoiding getting stuck in a local minima 
and stop the training process. A detailed description of FANN library can be found in 
[12] and a free implementation on different programming languages and platforms is 
available and maintained under the GNU Lesser General Public License (LGPL) [13]. 

3   Experimental Dataset and Validation 

In order to evaluate the introduced method, several experiments have been conducted 
with two main objectives: the performance of the system in recognizing synthesized 
instrument sounds and recognizing instruments from real recordings. All recordings 
were monophonic, 16-bit wav files downsampled to 11 kHz.  

3.1   Synthesized Instruments 

Dataset. For this purpose we chose instrument tones, produced with 5 different syn-
thesizers, namely the simple Microsoft Synth, the embedded synthesizer on a Sound 
Blaster Live! Sound Card, a Yamaha VL-70m Tone Generator, Kontakt player and 
Edirol Soft-Synth. From each synthesizer 19 instruments (18 instruments for Kontakt 
player, soprano sax was missing) were selected, each playing C4 note, except the 
flutes that were all playing C5. Each note was recorded 5 times with 5 different values 
for velocity (40 for pp-p, 60 for p-mp, 80 for mf-f, 100 for f-ff and 120 for ff-fff) and 
was named as sample1 - sample5. A total amount of 470 notes was tested. 

Validation. For each synthesizer, all notes (19x5=95) were coded with the TESPAR 
method and the S-Matrices for each note were created. From these matrices, two pairs 
of datasets were created, each pair used in two experiments accordingly (exp1 and 
exp2). In exp1, the training data for the FANN was the mean S-Matrix of each in-
strument (from the 5 note samples) and the test data were all the S-Matrices from the 
recordings of this synthesizer (95 notes). In exp2, the training data for the FANN 
were S-Matrices from samples 1,3,5 of each note, while the test data were S-Matrices  
from samples 2,4. In this experiment training and testing data are completely inde-
pendent, which is usually the scenario in real-world recognition applications. 

3.2   Real Instruments Dataset 

Dataset. The evaluation material for testing the system under real conditions is ob-
tained from the original recordings from Iowa University [14]. Recordings from 20 
instruments playing C4 and C5 notes (flutes) were used, in vibrato and non vibrato 
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variations and from different strings (for the string family instruments). All instru-
ments were playing in pp, mf and ff, resulting in 3 samples from each note (pp - sam-
ple1, mf - sample2 and ff - sample3). A total amount of 84 notes were tested. 

Validation. The evaluation method used was almost the same with the one used for 
the synthesized instruments. S-Matrices were created for each note. In exp1, the train-
ing data for the FANN was the mean S-Matrix of each instrument (from the 3 note 
samples) and the test data were the S-Matrices from the 84 notes. In exp2, the training 
data were the S-Matrices from pp and ff note samples (sample1,3) and the test data 
was the S- Matrix from mf note sample (sample2). 

3.3   FANN Training 

Training a NN is a random procedure that depends on a variety of parameters involv-
ing training algorithm, error function, hidden and output layer activation method, 
learning rate and more. Due to these random results, classification was not based on 
the results from a single FANN but from 10 parallel FANNs. Five of them were 
trained using the sigmoid-stepwise function and five using the stepwise function. The 
averaged result was used for classification purposes. Every one of the 10 parallel 
FANNs converged after an average of 80 epochs reaching a set Mean Square Error of 
MSE ≤ 0.01. 

Each FANN has 48 neurons for the input layer plus one bias neuron, one hidden 
layer with 30 neurons plus one bias neuron and 19 neurons for output (20 for Iowa 
Music Database [14]). Each output neuron represents one instrument and can take 
values from 0 to 1. Its value should be 1 in a correct classification of the according in-
strument, while all others should be 0. This ideal situation results in a MSE of 0. 

3.4   Results 

Kontakt Player. Tables 1, 2 show the recognition rates for the exp 1, 2 respectively. 
In both experiments, the higher recognition rates for all the instruments (in bold 
numbers) correspond to the correct ones. Recognition is successful for all instruments, 
with all rates rising above 87%, apart from the violin (50% and 58%). The total MSE 
is 12% in the first experiment and 6% in the second, values that demonstrate the high 
success of the process for the specific synthesizer. Detailed recognition matrices will 
not be shown for all tested synthesizers but the brief description that follows is 
indicative of the effectiveness of the method in all of them. 

Microsoft Synth. Highest errors occurred for the violin, the clarinet and the tuba. The 
total MSE was 53%. In experiment 2, viola was recognized as violin and tuba as 
trombone. However, in both cases, the correct instruments did get the second higher 
rate, while the higher rates did remain in the same instrument family group. The total 
MSE was 50%. 

Sound Blaster Live! Synth. In experiment 1, all instruments were recognized 
successfully, with very high recognition rates (mostly above 90%) and a very low 
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total MSE of 5%. Equivalent results were taken in experiment 2. In both experiments, 
the french horn delivered the higher MSE, which was still relatively low (65% and 
53%). 

Yamaha VL70-m Tone Generator. This tone generator uses physical modelling 
methods to synthesize sound. Thus, the notes produced share the versatility and 
complexity of natural instrument notes. In both experiments, the higher recognition 
rates correspond to the correct instruments, while the total MSE is relatively low 
(36% and 24% respectively). In the second experiment, 8 instruments gather rates 
above 90%. 

Edirol Soft-Synth. In the first experiment all instruments were successfully 
recognized, while in the second experiment only the piano was mismatched. In both 
experiments, some instruments gathered high recognition rates while other gathered 
low. However, in the second experiment, we find very high rates for the violin, the 
viola, the piccolo, the soprano saxophone, the tenor sax and the trumpet. The MSEs 
for the two experiments are respectively 45% and 48%. 

Iowa Instrument Database. Tables 3, 4 correspond to exp 1, 2 for real-instrument 
notes obtained from the Iowa Instrument Database. In the first experiment, 26 out of 
28 attempts were correctly recognized, while in the second experiment, 22 out of 28. 
A flute recording was recognized as violin in both experiments. Eb clarinet and bass 
clarinet were recognized as Bb clarinet in the second experiment. Total MSE is 43% 
in the first experiment and 58% percent in the second. 

Table 1. Kontakt Player Experiment 1 
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Violin 58 0 5 0 17 0 0 0 1 3 0 9 5 0 1 0 2 0 3 61
Viola 0 94 2 2 0 1 1 0 0 0 0 0 12 0 3 2 0 0 2 14
Cello 0 0 88 1 3 0 0 0 0 0 0 2 4 3 0 0 2 0 0 11
Contrabass 0 0 10 74 1 1 0 0 0 0 0 3 1 3 0 0 0 2 0 30
Piccolo 5 0 1 0 93 0 0 0 0 2 0 1 1 0 0 0 0 1 3 3
Flute 0 0 0 1 0 98 0 0 0 3 0 3 0 0 0 0 0 0 0 1
Oboe 0 0 0 0 0 0 87 0 0 0 0 0 0 0 1 0 1 0 0 2
English Horn 1 1 0 6 0 1 9 87 0 0 0 0 0 0 5 0 0 2 0 19
Clarinet 2 0 0 1 0 0 5 0 93 0 0 0 1 0 1 0 0 0 1 3
Bassoon 1 0 0 0 1 0 0 0 0 96 0 0 0 0 0 0 1 0 2 1
Soprano Sax - - - - - - - - - - - - - - - - - - - -
Alto Sax 3 0 1 0 1 2 0 0 0 0 0 88 2 1 0 0 0 0 0 8
Tenor Sax 2 8 1 0 1 0 1 1 2 0 0 1 86 0 1 0 1 0 1 11
Baritone Sax 0 0 11 0 0 0 0 0 0 0 0 0 0 81 0 0 0 2 0 23
Trumpet 1 0 0 0 2 0 4 1 0 0 0 1 3 1 93 0 0 0 0 5
French Horn 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 95 2 0 0 2
Trombone 2 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 96 0 0 1
Tuba 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 99 0 0
Piano 6 0 0 0 8 0 0 0 0 4 0 0 0 0 0 0 0 0 87 13

12Total MSE  
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Table 2. Kontakt Player Experiment 2 
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Violin 50 0 2 0 2 5 0 0 0 0 0 4 4 0 0 0 1 0 2 55
Viola 0 98 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
Cello 0 0 87 1 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 5
Contrabass 0 0 0 92 0 1 0 0 0 0 0 0 0 5 0 0 0 0 0 5
Piccolo 1 0 3 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Flute 1 0 0 1 0 95 0 0 0 1 0 15 0 0 0 0 0 0 0 6
Oboe 0 0 0 0 0 0 97 0 1 0 0 0 0 0 0 0 0 0 0 0
English Horn 1 0 0 3 0 0 0 99 0 0 0 0 0 0 0 0 0 2 0 1
Clarinet 0 0 0 1 0 0 1 0 99 0 0 0 0 0 0 0 0 0 0 0
Bassoon 1 0 0 1 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0
Soprano Sax - - - - - - - - - - - - - - - - - - - -
Alto Sax 2 0 1 1 0 1 0 0 0 0 0 97 2 1 0 0 0 0 0 1
Tenor Sax 1 4 5 1 0 0 0 0 0 0 0 1 95 0 0 1 0 0 0 3
Baritone Sax 0 0 0 8 0 0 0 0 0 0 0 1 0 87 0 0 0 0 0 12
Trumpet 0 0 0 0 0 0 2 0 0 0 0 0 0 0 98 0 0 0 0 0
French Horn 0 10 0 0 0 0 1 0 0 0 0 0 3 0 0 99 0 0 0 7
Trombone 2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 93 0 0 6
Tuba 0 0 0 2 0 0 0 5 0 0 0 0 0 0 0 0 0 99 0 5
Piano 10 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 95 4

6Total MSE  

Table 3. Iowa Instrument Database Experiment 1 
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Violin.arco.sulG 84 5 0 0 3 5 5 0 1 1 0 6 0 1 1 0 0 0 1 0 22
Viola.arco.sulC 4 75 0 1 0 0 0 0 0 0 1 0 0 0 19 0 0 0 2 0 26
Viola.arco.sulG 17 92 0 0 0 0 0 0 0 0 1 0 0 0 16 0 0 0 1 0 26
Cello.arco.sulA 0 0 68 0 4 2 0 6 0 0 0 0 0 0 1 0 4 0 0 0 29
Cello.arco.sulD 0 0 92 0 2 2 0 3 0 8 0 0 0 0 0 0 2 0 0 0 13
Cello.arco.sulG 1 0 78 1 0 2 13 2 0 0 0 0 1 0 0 0 0 1 0 0 32
Bass.arco.sulD 0 2 3 85 0 0 0 1 0 0 0 7 1 0 0 0 0 0 0 4 18
Bass.arco.sulD 0 14 0 97 0 0 0 1 0 1 0 2 1 0 0 0 0 0 0 4 12
flute.vib 0 0 0 0 65 3 56 0 17 0 0 0 1 0 0 0 1 1 0 0 89
flute.novib 32 0 17 0 29 6 6 1 21 0 0 0 0 0 1 0 11 0 0 0 124
AltoFlute 6 0 13 1 16 62 26 2 9 0 0 0 2 0 5 3 10 1 0 0 91
BassFlute 4 1 0 0 27 3 78 0 11 0 0 1 3 0 1 0 1 1 0 4 47
oboe 0 0 2 0 0 0 0 79 0 0 0 0 0 0 1 0 2 0 0 0 11
Bassoon 0 0 0 0 0 0 0 0 91 0 0 0 0 0 0 1 0 1 8 0 7
EbClar 0 2 0 1 0 0 0 1 0 6 64 2 0 5 0 1 0 1 0 0 150
BbClar 0 4 0 0 0 0 0 0 2 3 69 4 0 4 5 0 0 0 13 0 37
BassClarinet 0 8 1 9 0 0 0 0 0 13 10 40 0 3 0 0 0 0 0 2 67
SopSax.NoVib 0 0 0 0 0 0 0 0 0 0 0 2 58 0 0 0 1 1 0 8 42
SopSax.Vib 0 0 0 3 0 0 0 7 0 0 0 5 69 0 0 0 2 7 0 6 45
AltoSax.NoVib 0 2 0 0 0 0 0 0 0 1 33 0 0 77 0 1 0 2 8 8 52
AltoSax.Vib 1 2 0 0 0 0 0 0 0 1 21 1 0 79 0 1 0 0 6 14 42
Trumpet.novib 0 9 0 0 0 0 0 14 0 0 4 0 0 0 95 0 0 0 0 0 11
Trumpet.vib 0 10 0 0 0 0 0 16 0 0 3 0 0 0 95 0 0 0 0 0 13
Horn 0 0 5 0 0 0 0 1 11 0 1 0 0 0 0 57 0 5 11 7 59
TenorTrombone 0 0 0 0 2 5 0 6 2 0 0 0 0 0 0 0 95 8 0 0 8
BassTrombone 0 0 0 0 0 0 3 0 18 0 0 0 0 0 0 22 3 72 2 0 49
Tuba 0 4 0 0 0 0 0 0 16 0 1 0 0 4 1 1 0 0 75 1 31
Piano 0 0 0 0 0 0 11 0 0 3 0 3 1 10 0 0 0 0 4 72 39

43Total MSE  
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Table 4. Iowa Instrument Database Experiment 2 
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Violin.arco.sulG 89 0 0 0 4 3 3 0 0 1 0 1 8 0 6 0 10 0 2 0 31
Viola.arco.sulC 0 45 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 5 0 49
Viola.arco.sulG 6 84 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 11
Cello.arco.sulA 0 1 49 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 38
Cello.arco.sulD 0 0 88 0 0 4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 9
Cello.arco.sulG 0 2 77 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 21
Bass.arco.sulD 3 13 0 70 0 0 0 0 0 1 0 28 8 0 0 0 0 1 0 0 62
Bass.arco.sulD 4 2 0 97 0 0 0 0 0 1 0 14 0 0 0 0 0 0 0 0 10
flute.vib 0 0 0 0 77 13 42 4 0 0 0 0 5 0 0 10 0 2 0 0 63
flute.novib 35 0 5 0 31 8 1 8 0 0 0 0 0 0 0 0 1 0 0 0 99
AltoFlute 18 0 16 1 37 51 12 1 0 10 0 0 5 0 10 0 11 2 0 0 105
BassFlute 0 0 1 1 23 9 50 0 0 0 0 0 10 0 0 0 0 1 0 0 61
oboe 0 0 0 0 0 0 0 96 0 0 0 0 0 0 6 0 0 0 0 0 2
Bassoon 0 0 0 0 5 0 0 0 90 0 0 0 0 0 0 1 0 1 0 0 5
EbClar 0 0 0 0 0 0 0 0 0 2 77 0 0 20 0 0 0 1 2 0 181
BbClar 0 0 0 0 0 0 0 0 2 0 43 0 0 14 0 0 0 0 5 0 61
BassClarinet 0 0 0 2 0 0 0 4 1 9 32 9 0 0 0 0 0 10 0 0 135
SopSax.NoVib 0 0 3 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 6 100
SopSax.Vib 0 0 0 0 4 5 8 0 0 0 0 0 7 1 0 0 4 7 0 9 113
AltoSax.NoVib 0 1 0 0 0 0 0 0 0 0 3 0 0 71 0 0 0 1 39 2 53
AltoSax.Vib 0 12 15 0 0 0 0 0 0 0 7 2 0 67 0 0 0 0 34 0 67
Trumpet.novib 0 4 0 0 1 0 0 9 0 0 0 0 0 0 85 0 0 0 0 0 10
Trumpet.vib 0 0 0 0 1 0 0 26 0 0 0 0 0 0 96 0 0 0 0 0 16
Horn 0 0 0 0 0 0 0 0 19 0 0 0 0 1 0 15 0 15 2 9 110
TenorTrombone 0 0 0 0 9 3 1 0 8 0 0 0 0 0 0 8 95 10 0 0 24
BassTrombone 0 0 0 0 0 2 1 0 17 0 0 0 0 1 0 10 3 35 20 6 89
Tuba 0 0 0 0 0 0 0 0 7 0 0 0 0 4 1 0 0 2 66 0 27
Piano 0 0 8 0 0 1 1 0 0 0 0 3 1 1 0 0 0 0 2 18 85

58Total MSE  

5   Conclusions 

In this paper, we presented a promising method for music instrument recognition and 
classification, using Time Encoded Signal Processing and Fast Artificial Neural Net-
works. The method proved to provide high recognition rates with notes produced 
from synthesizers, as well as with notes from real-instrument recordings. 

Future works include evaluation with notes having wider pitch range, from a wider 
range of synthesizers and natural-instrument recordings. Depending on the results of 
these tasks, one can continue with instrument identification in multi-instrumental, 
commercial recordings. 
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